
Observational ISM and Star Formation

This Class (Lecture 7):

Core Masses & Josh Dolence

Next Class:

More Collapse & Duncan Christie

Music: We Are All Made of Stars – Moby Astronomy 596 Spring 2007

Feb 6, 2007

Astro-ph

2. Testing grain-surface chemistry in massive hotcore regions

(S. E. Bisschop, J. K. Jorgensen, E. F. van Dischoeck and E. B. M. de Wachter)

- Submillimeter line-survey toward 7 high-mass YSOs aimed at detecting complex organic species
- Try to establish the chemical origin of a set of complex organic molecules thought to be produced by grain surface chemistry
- Find two families: hot and cold species

http://arxiv.org/abs/astro-ph/0702066

Astro-ph

- 1. Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment I/II/III (Kostas Tassis & Telemachos Mouschovias)
 - Formulates the problem of the formation of magnetically supercritical cores in magnetically sub-critical parent molecular clouds, and the subsequent collapse of the cores to high densities, past the detachment of ions from magnetic field lines
 - Follows the ambipolar-diffusion--driven formation and evolution of a fragment in a magnetically supported molecular cloud, until a hydrostatic protostellar core forms at its center

http://arxiv.org/abs/astro-ph/0702036 or 0702037/0702038

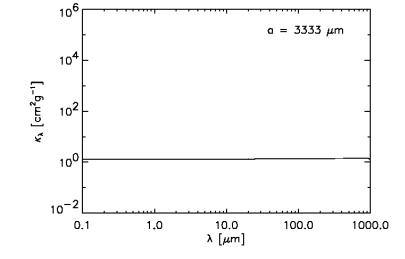
Feb 6, 2007

Astronomy 596 Spring 2007

Talks

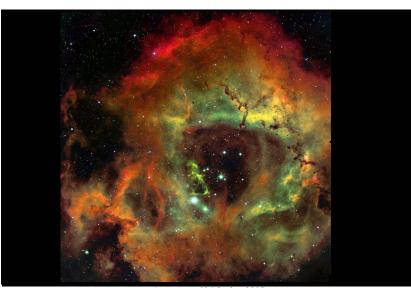
- 1. The Journey of the Sun Through Our Galactic Environment and Its Effect on the Heliosphere and Earth (Priscilla Frisch)
 - Astronomy Colloquium, Tuesday, 1600, in classroom
- 2. Graduate Student from Australia, Annie Hughes, will give a talk on her research interest of molecular cloud structure and evolution and the far-infrared/radio correlation, with particular emphasis on the LMC.
 - Star Formation Lunch, Thursday, Noon, in classroom
- 3. Connecting Local and Global Star Formation (Erik Rosolowsky)
 - Journal Club, Friday, Noon, in classroom (\$1.50/slice of pizza)

Outline


- Structure of molecular clouds?
- How are they formed?

Dust Opacities Example: Silicate

Opacity of amorphous olivine (silicate) for different grain sizes

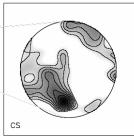

Feb 6, 2007

Astronomy 596 Spring 2007 http://www.mpia-hd.mpg.de/homes/dullemon/lectures/starplanet/index.html

Feb 6, 2007

Astronomy 596 Spring 2007

The Rosette HII Region & Molecular Cloud



Structure of Molecular Clouds

- What is the topology of molecular clouds?
 - CO maps show that molecular gas is inhomogeneous
 - Discrete clumps?
 - Clouds, clumps & cores?
 - Hierarchical/self-similar/fractal?

Astronomy 596 Spring 2007

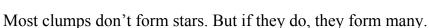
Astronomy 596 Spring 2007

Giant Molecular Clouds

Structure of GMCs: two descriptions

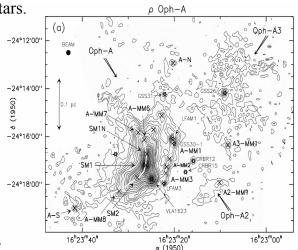
- Clump picture: hierarchical structure
 - Clouds ($\geq 10 \text{ pc}$)
 - Clumps (~1 pc)
 - Precursors of stellar clusters
 - Cores (~0.1 pc)
 - High density regions that form individual stars or binaries
- Fractal picture: clouds are scale-free

 $V \propto A^{D/2}$


 $D \approx 1.4$ fractal dimension

Feb 6, 2007

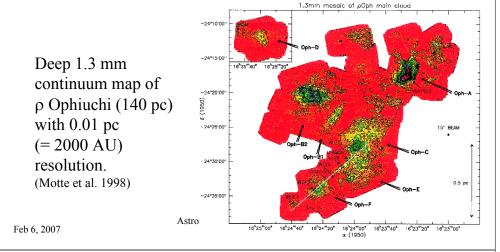
Feb 6, 2007


Astronomy 596 Spring 2007

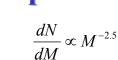
Core mass spectrum

Core mass spectrum is more interesting for predicting the stellar masses of the newborn stars. $\rho \text{ Oph-A}$

Deep 1.3 mm continuum map of ρ Ophiuchi (140 pc) with 0.01 pc (= 2000 AU) resolution. (Motte et al. 1998)

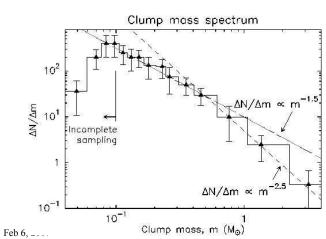


Core mass spectrum



Most clumps don't form stars. But if they do, they form many.

Core mass spectrum is more interesting for predicting the stellar masses of the newborn stars.


Core mass spectrum

for M < 0.5 M_{\odot}

 $\frac{dN}{dM} \propto M^{-1.5}$

for M > 0.5 M_{\odot}

Motte et al. 1998

Core mass spectrum

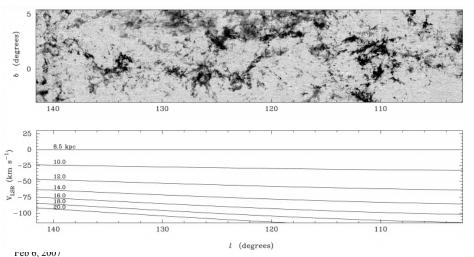
Similar to stellar IMF (Initial Mass Function)

$\mathbf{for } \mathbf{for } \mathbf{fo$

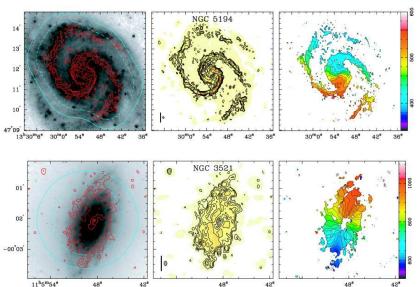
Where are Molecular Clouds?

FCRAO outer Galaxy Survey (Heyer et al. 1998 ApJS 115 241)
No kinematic distance ambiguity & less confusion
Regions with little or no CO emission

Cleared of molecular gas by O stars
Photodissociation, stellar winds & supernova explosions
These processes may sweep up molecular gas and compress it to form the next generation of stars
CO is exclusively found in spiral arms
H₂ Arm/interarm contrast ~ 30:1 --- HI is 2.5:1
Molecular clouds form in a compressed atomic medium

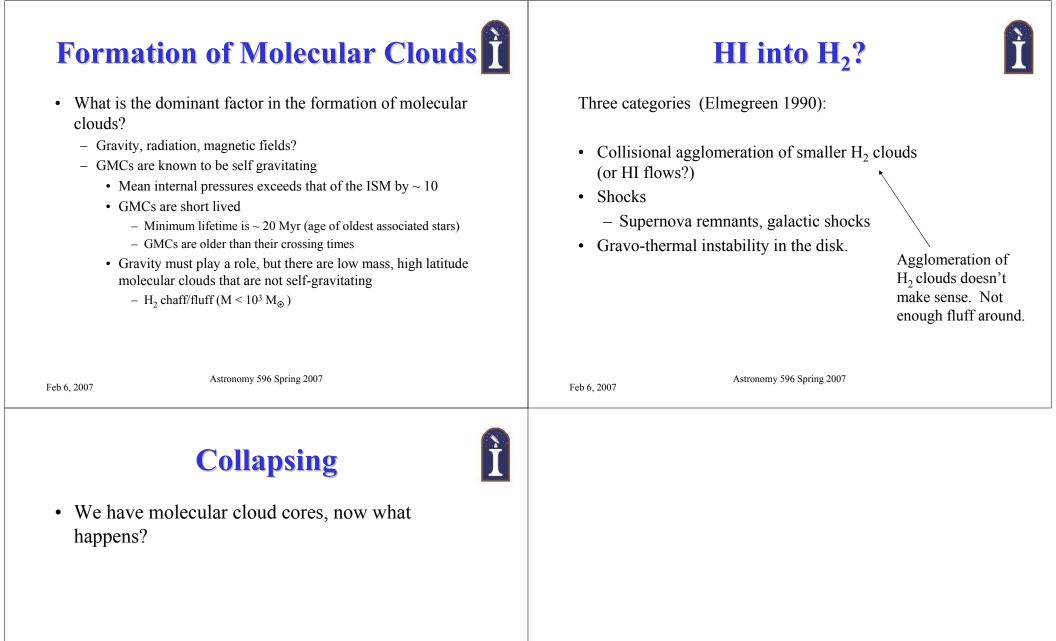

- Lifetime < arm crossing time ~ 10^7 yr
 - Consistent with depletion rate of H_2 by star formation

Feb 6, 2007


Astronomy 596 Spring 2007

Interarm CO?

- FCRAO CO survey of the outer Galaxy
 - Local arm (0 to -10 km/s) and Perseus arm (-40 km/s)
 - No CO between



Helfer et al. 2003 ApJS 145 259

Feb 6, 2007

Astronomy 596 Spring 2007

