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OutlineOutline

• HI and CO

• What are the molecular clouds?

• What is a giant molecular cloud?
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H IH I

• Total mass of atomic H exceeds H2 in the Galaxy.

• Atomic H is the reservoir that ultimately produces molecular 

clouds.

• A new dimension entered radio astronomy with the detection 

of the λ = 21 cm line of atomic hydrogen

– Long wavelength is less affected by extinction.

– Generally in emission but also in absorption against a background 

continuum radio source, e.g., an HII region

– 21 cm line measures the quantity of interstellar HI

– Doppler shift gives radial velocities

• What causes this emission?
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Spin FlipSpin Flip

• Consequence of the proton and electron spins

• H atom consists of 1 proton + 1 electron

– Electron: spin S=1/2

– Proton: nuclear spin I=1/2

– Total spin: F= S + I = 0 or 1

• Hyperfine interaction leads to 

splitting of ground level:

– F = 1 gu= 2F+1 = 3 Eu= 5.87×10–6 eV

– F = 0 gl= 2F+1 = 1 El= 0 eV

http://www.astronomynotes.com/ismnotes/s3.htm
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HyperfineHyperfine

In 1H 2S1/2 the F = 0 and F = 1 have zero electric dipole

– F=0 → 1 is a magnetic dipole transition

• A10 = 2.85 x 10-15 s-1

– Or a mean lifetime 

of  ≈ 11 Myr

– Collisionally excited

– Usually collisionally 

de-excited, but some emit

– With enough atoms, can 

gather an appreciable radio signal

– The signal is directly proportional to the to column density 

(i.e. # of atoms/cm-2) for N(HI) << 5.5 ×1020 cm–2

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/h21.html

http://www.leapsecond.com/pages/unix/
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Pioneer 10Pioneer 10

Hyperfine unit used on Pioneer 10 plaque
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Radiative Transfer: LTERadiative Transfer: LTE

• Can rewrite the standard radiative transfer equation with a 

brightness temperature (think radio astronomer perversion)

• In LTE the slab of material is at a single temperature that  

characterizes everything about the level population 

distribution 

– TB is the observed brightness temperature

– TBG is any power from “behind” the slab

– Ts is the power from the slab (Tspin in this case)

– τ is the optical depth of the slab

)1( ττ −−
−+= eTeTT sBGB
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Probing the ISMProbing the ISM
• The excitation temperature 

generally is Tspin = Tkinetic

(i.e. dominated by 
collisions).

• Can observe an extended 
source and an extragalactic 
bright source.

• Have to assume the cloud 
properties don’t change 
between ON/OFF positions.

• 2 equations and 2 unknowns 
(τ and Ts), can derive both 
column density and 
temperature!

http://www.strw.leidenuniv.nl/~dave/ISM/lecture7.pdf

Assumption 

Ts < Tsrc

Tsrc



Jan 23, 2007
Astronomy 596 Spring 2007

Observational Evidence for 2 Phases:Observational Evidence for 2 Phases:

CNM/WNMCNM/WNM

• Evidence for the 

CNM/WNM

– Clark 1965 ApJ 142 1298

– Radhakrishnan 1972 ApJS

24 15

– Dickey 1979 ApJ 228 465

– Payne 1983 ApJ 272 540

• Good agreement between narrow absorption lines and narrow peak 

emission lines: ∆V ≈ 3 km/s

• There is excess emission outside the region over which absorption 

occurs (dashed lines): ∆V ≈ 9 km/s
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Emission and AbsorptionEmission and Absorption

Note that the absorption features are 
sharper than the corresponding 
emission spectrum

Absorption: various clumps of cold 
clouds with different velocities 
(Cold Neutral Medium). Not all EG 
source show absorptions– small 
filling factor. 

Emission: warm gas (Warm Neutral 
Medium).  Ubiquitous emission–
large filling factor.

http://www.strw.leidenuniv.nl/~dave/ISM/lecture7.pdf
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CNMCNM

• 40% of atomic neutral gas

• Cold diffuse clouds with T ≈ 70 K 

=> narrow absorption + emission components

• CNM occurs in clumps throughout the disk of the Milky 

Way with z ≈ 100 pc

– Typically in disk: N(HI)full thickness ≈ 6×1020 cm-2

– Locally: N(HI) ≈ 4 × 1020 cm-2

• We live in a “H I hole”

http://www.cnm.com.br/ Jan 23, 2007
Astronomy 596 Spring 2007

WNMWNM

• 60% of atomic neutral gas

• Broad emission component, but temperature 

difficult to estimate

– ∆V ≈ 9 km s-1=> T < 10000 K

– Limits on τ => T > 3000 K

• WNM is distributed throughout Milky Way with 

substantial filling factor 

⇒“raisin-pudding”model of ISM

• Large scale height (Gaussian z ≈ 250 pc and 

exponential z ≈500 pc), which means >> than CNM) 

=> warm H I halo?

http://216.54.196.65/wwvp/westminster_neighborhood_ministries/images/wnm%20movie.jpg

→ T ≈ 8000 K
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AnticorrelationAnticorrelation

The higher the 

optical depth (τ), 

the lower the 

temperature.

http://www.strw.leidenuniv.nl/~dave/ISM/lecture7.pdf
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Making Molecular CloudsMaking Molecular Clouds

• Now we have stuff in between stars (ISM)

• But we want to make stars.

• Stars form in GMCs, so how do we make those?

– CNM and WNM are in pressure equilibrium (2 phases)

– Can not consider molecular gas as an ISM phase 

→ gravity dominated
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The ProblemThe Problem

• How to trace molecular material?

• Molecular clouds are mostly made from H2

• And H2 does not play well, emission-wise

• One of the most difficult to detect molecules under 

typical molecular cloud conditions

– No permanent dipole moment, must radiate through a 

relatively slow and weak quadrupole transition (∆J=2)

• Lucky for us, the next abundant molecule, CO, 

comes to the rescue!

http://zenstoves.net/CO/co.gif Jan 23, 2007
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Molecular EmissionMolecular Emission

• Energy difference between two 

electronic states: typically a 

few eV (10,000 cm-1) 

→ VIS and UV

• Energy difference between two 

vibrational states typically 

0.1-0.3 eV (~500-3000 cm-1) 

→ IR

• Energy difference between two 

rotational states typically 0.001 

eV (~10  cm-1)

→ (sub)millimeter

http://www.strw.leidenuniv.nl/~dave/ISM/lecture12.pdf

CO
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Carbon MonoxideCarbon Monoxide

• J = 1 → 0 ν= 115 GHz λ= 2.6 mm

• J = 2 → 1 ν= 230 GHz λ= 1.3 mm

• J = 3 →2 ν= 345 GHz λ= 0.87 mm

– Typically λ a few mm for J = 1 → 0 in heavy 
diatomics (e.g. CS, SiO, SO)

– Hydrides (e.g. OH) have much higher rotational 
frequencies (near λ= 400 µm) because µ is much 
smaller

• CO J=1-0 at 115 GHz is the molecular 
analog of the HI 21-cm line

http://zenstoves.net/CO/co.gif Jan 23, 2007
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CO vs. HCO vs. H22

The low abundance of CO (nCO/nH2
≤ 5 × 10-4 if 

all C is in CO) compared to H2 or HI is offset 

by the higher Einstein A values and lower 

excitation temperatures

– 12CO lines can be optically thick

– Isotopic lines of CO are important

– The lower abundance means that 13CO or 

C18O are optically thin when 12CO is 

optically thick
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Calculate NCalculate NCOCO

• Typically, we use the first refuge of a scoundrel:

– Assume Local Thermal Equilibrium

• Single temperature  characterizes everything about the  level 

population distribution 

– Least sophisticated, but also requires the least amount of 

additional observational information

– Traditionally, the temperature is the physical temperature of the 

system, but that fails apart in our apps

– We use a non-kinetic temperature, but no big woop.

– So the temperature to use is difficult to figure out
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Orion Taurus Orion Taurus AurigaAuriga
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OrionOrion

Dame et al. (2001 ApJ 547 792)

OrionOrion

Orion in COOrion in CO
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Orion in the IROrion in the IR

http://astro.berkeley.edu/~ay216/06/NOTES/ay216_2006_18.pdf
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Orion in IR/COOrion in IR/CO
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Orion Finding Orion Finding 
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TaurusTaurus--PerseusPerseus--AurigaAuriga
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TaurusTaurus--PerseusPerseus--AurigaAuriga ComplexComplex
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TMC in TMC in 1212COCO

Taurus region in Taurus region in 1212CO with the FCRAO 14CO with the FCRAO 14--m m 
(FWHM = 45(FWHM = 45″″).).

http://astro.berkeley.edu/~ay216/06/NOTES/ay216_2006_18.pdf
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TMC in TMC in 1313COCO

Taurus region in Taurus region in 1313CO with the FCRAO 14CO with the FCRAO 14--m m 
(FWHM = 45(FWHM = 45″″).).

http://astro.berkeley.edu/~ay216/06/NOTES/ay216_2006_18.pdf
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CO and HICO and HI

• CO is generally the most easily observed molecular line

– No molecular cloud free of CO emission

– GMCs throughout the Milky Way can be detected in 

CO (1-0) even with a small telescope

• Independent methods show that the velocity-integrated 

intensity of the J=1-0 line measures N(H2) to within factor  

of 2 or better when averaged over large region

– Accepted value is 2 to 3 × 1020 molecules cm-2 (K  km s-1)-1

– Dame et al. 2001 value is 1.8 × 1020
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CO and HICO and HI

• CO maps show a much clumpier morphology and different 

global structure than the broad HI distribution 

• Individual molecular clouds and cloud complexes can be 

identified over much of the Galaxy

– Although CO lines are often optically thick there are 

different velocities for different Galactic radii and so we can 

find clouds over a large section of the Galactic disk

– In some regions the clouds complexes are confused, and 

there is no definitive picture of the structure along these lines 

of sight
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Distribution of Molecular Distribution of Molecular 

CloudsClouds

Dame et al. 2001: The CO distribution is plane of Galaxy is thin

– Vertical extent ±45-75 pc over much of the disk

– Similar to that of OB associations

– Flares out to ±100-200 pc

http://astro.berkeley.edu/~ay216/06/NOTES/ay216_2006_18.pdf
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The Molecular RingThe Molecular Ring

Local gas

R > R
�

R < R
�

R > R
�

Inner galaxy/

outer galaxy
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Giant Molecular ComplexesGiant Molecular Complexes

• The strong (red-white) peaks in the 
(l, v) maps are 
giant molecular complexes

– M ≈ 105 –106 M
�

– σ ≈ 15 km/s or larger

• Appear to be well defined, coherent 
structures

– A large fraction of the total molecular 
gas is contained within such 
structures

• Nearby examples include W44 (3 
kpc) and the cloud associated with the 
Cas A SNR

M44: Reach et al. 2006, ApJ, 131, 1479
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Nearby Nearby GMCsGMCs

Cas A 
cloud

W44 
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Nearby Molecular CloudsNearby Molecular Clouds

• Taurus is the nearest molecular cloud

– Site of low-mass star formation

• Nearest site of OB star formation is 
Orion

• Nearest cloud complex is the Cygnus 
rift/Cygnus OB7

Dame et al. (1987)

Galactic

center

http://astro.berkeley.edu/~ay216/06/NOTES/ay216_2006_18.pdf
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What is a Molecular Cloud?What is a Molecular Cloud?
• Molecular clouds:

– Contain molecules (but don’t forget 

HI)

– Self-gravitating

– Magnetized

– Turbulent

• The central role of gravity, not their 

molecular composition, that 

distinguishes them from any other 

phase of the ISM

• Stars form only in molecular clouds

– Understanding star formation starts 

with understanding molecular clouds

http://hubblesite.org/newscenter/archive/releases/1997/34/image/m/format/web


