Astronomy 496/596:

Observational ISM and **Star Formation**

TR 1300-1420 134 Astronomy Building

This Class (Lecture 3):

Molecular Clouds Phone: 244-3615

Email: lwl @ uiuc . edu

Leslie Looney

Office: Astro Building #218 Next Class:

Office Hours: Molecular Clouds Drop by or by appointment

http://eevore.astro.uiuc.edu/~lwl/classes/astro596/spring07

Music: Million Miles Away from Home – Dune Astronomy 596 Spring 2007

Jan 23, 2007

Jan 23, 2007

Astronomy 596 Spring 2007

- Total mass of atomic H exceeds H₂ in the Galaxy.
- Atomic H is the reservoir that ultimately produces molecular clouds.
- A new dimension entered radio astronomy with the detection of the $\lambda = 21$ cm line of atomic hydrogen
 - Long wavelength is less affected by extinction.
 - Generally in emission but also in absorption against a background continuum radio source, e.g., an HII region
 - 21 cm line measures the quantity of interstellar HI
 - Doppler shift gives radial velocities
- What causes this emission?

Outline

- HI and CO
- What are the molecular clouds?
- What is a giant molecular cloud?

Spin Flip

- Consequence of the proton and electron spins
- H atom consists of 1 proton + 1 electron
 - Electron: spin S=1/2
 - Proton: nuclear spin *I*=1/2
 - Total spin: F = S + I = 0 or 1
- Hyperfine interaction leads to splitting of ground level:

$$-F = 1$$
 $g_u = 2F + 1 = 3$ $E_u = 5.87 \times 10^{-6} \text{ eV}$

$$-F = 0$$
 $g_i = 2F + 1 = 1$ $E_i = 0$ eV

Neutral atomic Hydrogen creates 21 cm radiation

Hyperfine

Hydrogen hyperfine

5.9 x 10 ⁻⁶e\

structure

Nuclear Electron

In ${}^{1}\text{H }{}^{2}\text{S}_{1/2}$ the F=0 and F=1 have zero electric dipole

- $F=0 \rightarrow 1$ is a magnetic dipole transition
 - $A_{10} = 2.85 \times 10^{-15} \text{ s}^{-1}$
- Or a mean lifetime of $\approx 11 \text{ Myr}$
- Collisionally excited
- Usually collisionally de-excited, but some emit
- With enough atoms, can gather an appreciable radio signal
- The signal is directly proportional to the to column density (i.e. # of atoms/cm⁻²) for $N({\rm HI}) << 5.5 \times 10^{20} \, {\rm cm}^{-2}$

Jan 23, 2007

Astronomy 596 Spring 2007

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/h21.htm http://www.leansecond.com/pages/unix/

Pioneer 10

Hyperfine unit used on Pioneer 10 plaque

Astronomy 596 Spring 2007

Jan 23, 2007

Radiative Transfer: LTE

$$T_B = T_{BG}e^{-\tau} + T_s(1 - e^{-\tau})$$

- Can rewrite the standard radiative transfer equation with a brightness temperature (think radio astronomer perversion)
- In LTE the slab of material is at a single temperature that characterizes everything about the level population distribution
 - T_B is the observed brightness temperature
 - T_{BG} is any power from "behind" the slab
 - T_s is the power from the slab (T_{spin} in this case)
 - τ is the optical depth of the slab

Probing the ISM

- The excitation temperature generally is T_{spin} = T_{kinetic} (i.e. dominated by collisions).
- Can observe an extended source and an extragalactic bright source.
- Have to assume the cloud properties don't change between ON/OFF positions.
- 2 equations and 2 unknowns (τ and T_s), can derive both column density and temperature!

Assumption $T_s < T_{src}$

Astronomy 596 Spring 2007

http://www.strw.leidenuniv.nl/~dave/ISM/lecture7.pdf

Observational Evidence for 2 Phases: CNM/WNM

- Evidence for the CNM/WNM
 - Clark 1965 ApJ 142 1298
 - Radhakrishnan 1972 ApJS 24 15
 - Dickey 1979 ApJ 228 465
 - Payne 1983 ApJ 272 540

- Good agreement between narrow absorption lines and narrow peak emission lines: $\Delta V \approx 3 \text{ km/s}$
- There is excess emission outside the region over which absorption occurs (dashed lines): $\Delta V \approx 9$ km/s

Emission and Absorption

Note that the absorption features are sharper than the corresponding emission spectrum

Absorption: various clumps of cold clouds with different velocities (Cold Neutral Medium). Not all EG source show absorptions—small filling factor.

Emission: warm gas (Warm Neutral Medium). Ubiquitous emission—large filling factor.

http://www.strw.leidenuniv.nl/~dave/ISM/lecture7.pd

Jan 23, 2007

Astronomy 596 Spring

CNM

- 40% of atomic neutral gas
- Cold diffuse clouds with $T \approx 70$ K => narrow absorption + emission components
- CNM occurs in clumps throughout the disk of the Milky Way with $z \approx 100 \text{ pc}$
 - Typically in disk: $N(HI)_{full\ thickness} \approx 6 \times 10^{20} \, \text{cm}^{-2}$
 - Locally: $N(HI) \approx 4 \times 10^{20} \, \text{cm}^{-2}$
 - We live in a "H I hole"

Astronomy 596 Spring 2007

WNM

- 60% of atomic neutral gas
- Broad emission component, but temperature difficult to estimate
 - $-\Delta V \approx 9 \text{ km s}^{-1} => T < 10000 \text{ K}$
- \rightarrow T \approx 8000 K
- Limits on $\tau => T > 3000 \text{ K}$
- WNM is distributed throughout Milky Way with substantial filling factor
 - \Rightarrow "raisin-pudding" model of ISM
- Large scale height (Gaussian $z \approx 250$ pc and exponential $z \approx 500$ pc), which means >> than CNM)

=> warm H I halo?

Anticorrelation

The higher the optical depth (τ) , the lower the temperature.

http://www.strw.leidenuniv.nl/~dave/ISM/lecture7.pd

Jan 23, 2007

Astronomy 596 Spring 2007

Making Molecular Clouds

- Now we have stuff in between stars (ISM)
- But we want to make stars.
- Stars form in GMCs, so how do we make those?
 - CNM and WNM are in pressure equilibrium (2 phases)
 - Can not consider molecular gas as an ISM phase
 - → gravity dominated

Jan 23, 2007

Astronomy 596 Spring 2007

The Problem

- How to trace molecular material?
- Molecular clouds are mostly made from H₂
- And H₂ does not play well, emission-wise
- One of the most difficult to detect molecules under typical molecular cloud conditions
 - No permanent dipole moment, must radiate through a relatively slow and weak quadrupole transition ($\Delta J=2$)
- Lucky for us, the next abundant molecule, CO, comes to the rescue!

Molecular Emission

- Energy difference between two electronic states: typically a few eV (10,000 cm⁻¹)
 - \rightarrow VIS and UV
- Energy difference between two vibrational states typically 0.1-0.3 eV (~500-3000 cm⁻¹)
 - $\rightarrow IR$
- Energy difference between two rotational states typically 0.001 eV (~10 cm⁻¹)
 - \rightarrow (sub)millimeter

http://www.strw.leidenuniv.nl/~dave/ISM/lecture12.p http://zenstoves.net/CO/co.gi

Astronomy 596 Spring 2007

Jan 23, 2007

Astronomy 5

VIBRATIONAL STATES ROTATIONAL STATES

Jan 23, 2007

Carbon Monoxide

- $J=1 \rightarrow 0$ v= 115 GHz λ = 2.6 mm
- $J = 2 \rightarrow 1$ v = 230 GHz $\lambda = 1.3 \text{ mm}$
- $J = 3 \rightarrow 2$ v= 345 GHz $\lambda = 0.87$ mm
 - Typically λ a few mm for $J = 1 \rightarrow 0$ in heavy diatomics (e.g. CS, SiO, SO)
 - Hydrides (e.g. OH) have much higher rotational frequencies (near λ = 400 μm) because μ is much smaller
- CO *J*=1-0 at 115 GHz is the molecular analog of the HI 21-cm line

Astronomy 596 Spring 2007

http://zenstoves.net/CO/co.gif

CO vs. H₂

The low abundance of CO ($n_{\rm CO}/n_{\rm H_2} \le 5 \times 10^{-4}$ if all C is in CO) compared to H₂ or HI is offset by the higher Einstein *A* values and lower excitation temperatures

- ¹²CO lines can be optically thick
- Isotopic lines of CO are important
- The lower abundance means that ¹³CO or C¹⁸O are optically thin when ¹²CO is optically thick

Jan 23, 2007

Astronomy 596 Spring 2007

Calculate N_{CO}

- Typically, we use the first refuge of a scoundrel:
 - Assume Local Thermal Equilibrium
 - Single temperature characterizes everything about the level population distribution
 - Least sophisticated, but also requires the least amount of additional observational information
 - Traditionally, the temperature is the physical temperature of the system, but that fails apart in our apps
 - We use a non-kinetic temperature, but no big woop.
 - So the temperature to use is difficult to figure out

Jan 23, 2007

FIG. 1.—Velocity-integrated intensity of CO emission, W_{CO} . The lowest contour is 0.5 K km s⁻¹, and the separation between contours is 1.5 K km s⁻¹. The border of the surveyed region is indicated by the outer, solid line; in the small regions beyond the dashed line the map is undersampled, with a spacing of $4^m \times 1^9$.

TMC in ¹²CO

Taurus region in 12 CO with the FCRAO 14-m (FWHM = 45").

TMC in ¹³CO

Taurus region in ${}^{13}CO$ with the FCRAO 14-m (FWHM = 45").

CO and HI

- Ì
- CO is generally the most easily observed molecular line
 - No molecular cloud free of CO emission
 - GMCs throughout the Milky Way can be detected in CO (1-0) even with a small telescope
- Independent methods show that the velocity-integrated intensity of the *J*=1-0 line measures *N*(H₂) to within factor of 2 or better when averaged over large region
 - Accepted value is 2 to 3 \times 10²⁰ molecules cm⁻² (K km s⁻¹)⁻¹
 - Dame et al. 2001 value is 1.8×10^{20}

Jan 23, 2007

Astronomy 596 Spring 2007

Jan 23, 2007

Astronomy 596 Spring 2007

Distribution of Molecular Clouds

Dame et al. 2001: The CO distribution is plane of Galaxy is thin

- Vertical extent $\pm 45-75$ pc over much of the disk
- Similar to that of OB associations
- Flares out to $\pm 100-200$ pc

OB associations

CO and HI

- CO maps show a much clumpier morphology and different global structure than the broad HI distribution
- Individual molecular clouds and cloud complexes can be identified over much of the Galaxy
 - Although CO lines are often optically thick there are different velocities for different Galactic radii and so we can find clouds over a large section of the Galactic disk
 - In some regions the clouds complexes are confused, and there is no definitive picture of the structure along these lines of sight

The Molecular Ring

Astronomy 596 Spring 2007 http://d

 $http://astro.berkeley.edu/\sim ay 216/06/NOTES/ay 216_2006_18.pdf$

Giant Molecular Complexes

- The strong (red-white) peaks in the (l, v) maps are giant molecular complexes
 - $M \approx 10^5 10^6 M_{\odot}$
 - $-\sigma \approx 15$ km/s or larger
- Appear to be well defined, coherent structures
 - A large fraction of the total molecular gas is contained within such structures
- Nearby examples include W44 (3 kpc) and the cloud associated with the Cas A SNR

M44: Reach et al. 2006, ApJ, 131, 1479

Jan 23, 2007

Astronomy 596 Spring 2007

Nearby GMCs

Nearby Molecular Clouds

What is a Molecular Cloud?

- Molecular clouds:
 - Contain molecules (but don't forget HI)
 - Self-gravitating
 - Magnetized
 - Turbulent
 - The central role of gravity, not their molecular composition, that distinguishes them from any other phase of the ISM
- Stars form only in molecular clouds
 - Understanding star formation starts with understanding molecular clouds

