

Deuterium Burning

• ${}^{2}\text{H} + {}^{1}\text{H} \rightarrow {}^{3}\text{He} + \Delta\text{E}$

 $\Delta E \sim 5.5$ MeV, important from 10^6 K

- Protostellar size increase depends partly on accretion rate but the deuterium burning is more important.
- Deuterium burning is very temperature sensitive.
 - An increase of T causes more deuterium burning
 - Thus, more heat, which increases protostellar radius
 - This, lowers T again

Feedback of Deuterium

April 3, 2007

Astronomy 596 Spring 2007

Deuterium burning

- Deuterium burning acts as kind of thermostat keeping the protostellar core at that evolutionary stage at about 10⁶K.
- Steady supply by new Deuterium from infalling gas via convection necessary to maintain thermostat.

Protostellar vs. Pre-main Sequence Evolution

- After the deuterium burning has ceased, protostars contract quasi-statically again, gaining energy from gravitational contraction.
- For low-mass protostars, the end of deuterium burning roughly coincides with the end of the main accretion phase because no additional deuterium is supplied to the core center.
- From now on, the main luminosity does not stem from the accretion shock anymore but from the gravitational quasi-static contraction.
- One can identify this point with the end of the protostellar and the beginning of the pre-main sequence phase in low-mass stellar evolution → The "birthline" on the HR diagram

Critical L: Radiative

Stahler & Palla 2004

- Shrinking releases gravitational energy while surface temperature stays approximately constant.
- The critical luminosity L_{crit} is the maximum value carried by radiative diffusion.
 - $L_{crit} = 1 L_{\odot} M_*^{11/2} R_*^{-1/2}$
- For growing protostars, L_{crit} rises sharply surpassing interior luminosity.

To ZAMS

- Since $L = 4\pi R^2 \sigma_B T_{eff}^4 \propto R_*^2$, the luminosity decreases and falls below Lcrit. \rightarrow Radiative core forms
- A shrinking outer convective layer still surrounds the radiative core
- Slow contraction, internal energy, temperature, and luminosity increases until hydrogen burning starts → ZAMS.
 - Stars below ${\sim}0.4 M_{\odot}$ reach the ZAMS still fully convective.

HR Diagram

- The birthline was found first observationally as the locus where stars first appear in the HR diagram emanating from their dusty natal envelope.
- Theoretically, one can define the birthline at the time where the main accretion has stopped (no infalling envelope)
 - Pre-main sequence star gains the main luminosity from gravitational contraction.

Movement on the HR

- So from the birthline, the lowmass stars start quasi-static contraction in their still convective phase
- They move vertically downward the so-called Hayashi tracks.
- After the cores become radiative, they start to increase their temperature (& luminosity) moving left on the radiative tracks (Henyey track).

Stahler & Palla 2004

Connection to the SEDs

More Massive Protostars

- Intermediate-mass protostars are already fully radiative when accretion stops; no vertical Hayashi track
- High-mass stars have short Kelvin-Helmholtz contraction time-scale and start H-burning, enter the ZAMS, before ending main accretion phase.
 - No (visible) pre-main sequence evolution since H-burning occurs in the deeply embedded phase.

Lithium Depletion

- Due to the highly convective lower-mass stars, lithium is transported to the center, where it can burn $(3 \times 10^6 \text{ K})$
- The abundance of lithium, as measured at the surface is depleted
 - A simple age estimate
- For pre-main sequence stars $>0.9~M_{\odot},$ the complete destruction of lithium is avoided
 - Convection retreats more quickly
 - $-~Stars > 1.3~M_{\odot}$ have very little lithium surface depletion
- Although this is broadly consistent with data, cluster members with similar L and T_{eff} may exhibit substantial spreads in surface lithium.

To the Main Sequence

- When central temp reaches 10⁷ K, we have hydrogen fusion
- Once the fusion energy balances surface loss from radiation, we have a main sequence star → ZAMS

Where was the Sun Born?

In relative isolation (Taurus, Bok globules,...)?

April 3, 2007

Astronomy 596 Spring 2007

Or as part of a rich cluster (more likely)?

The radiation environment can be quite harsh in clusters:

Orion Proplyds

Astronomy 596 Spring 2007

For stars still accreting gas/dust, *photoevaporation* can dramatically shorten the disk lifetime:

Ì

April 3, 2007

1000AU

0.3 pc

Astronomy 596 Spring 2007

April 3, 2007

Ì

Must therefore consider *environment* in clusters!

