Astronomy 496/596: CODSCERVATIONAL ISM AND Star Formation TR 1300-1420 134 Astronomy Building: This Class (Lecture 2): Astronomy 496/596: TR 1300-1420 TR 1300-1420 This Class (Lecture 2): TR 150 This Class (Lecture 2): TR 150 TR	Outline• ISM overview• Technical diversion– radio astronomy• HI and CO
Music: Fly Away – Lenny Kravitz Astronomy 596 Spring 2007	Astronomy 596 Spring 2007
 20-30 min lecture that hopefully prepares everyone for the paper in the next class Someone is chosen, randomly, to give a brief summary Like you would explain the key results to a peer Bullets of main points (not just from abstract) Primary gives presentation on paper Fit into large scale picture of star formation Parse paper into the more salient points Secondary, working with primary, chooses an important reference from paper and gives a brief summary Fit into presentation How it relates to topic at hand 	 Makes beautiful dust lanes Mostly confined to the disk, with a little gas in the halo In optical, only notice the extinction Most of the ISM is either cold (< 100 K: IR) or very hot (> 10⁶ K: x-ray) Only in the last 50 years has the nature & importance of the ISM become evident Density can be vastly different (n ~ 10⁻³ to 10⁶ cm⁻³) Still "ultra-high vacuum" (10⁻¹⁰ Torr is n ≈ 4 × 10⁶ cm⁻³, compare to air at STP n ≈ 3 × 10¹⁹ cm⁻³)

Solar Abundance

Element	N/N _H	Element	N/N _H
Н	1.0	Mg	4.2×10^{-5}
He	0.096	Al	3.5 × 10 ⁻⁶
С	2.9 × 10 ⁻⁴	Si	4.1 × 10 ⁻⁵
N	8.0 × 10 ⁻⁵	S	1.8 × 10 ⁻⁵
О	5.8 × 10-4	Ca	2.6 × 10-6
Na	2.4 × 10 ⁻⁶	Fe	3.4 × 10 ⁻⁵

From Lodders (2003): protosolar (corrected)

- Mass fractions
- X = 0.7110 (H), Y = 0.2741 (He), Z = 0.0149 (metals)
- Maybe very different in B stars (recent ISM values), e.g. higher C

H I: Atomic Gas

- "Cool" Clouds (CNM) $-T \approx 80 \text{ K}$
 - $-n \approx 1 \text{ cm}^{-3}$
- Warm neutral gas (WNM)
 - $-T \approx 6000 \text{ K}$
 - $-n \approx 0.05$ to 0.2 cm⁻³

The ISM

- Composition of ISM is similar to Solar System - Hydrogen is most abundant element (\geq 90 % of atoms)
- ISM regions characterized by state of hydrogen
 - Neutral atomic hydrogen (H⁰ or H I): "H-one"
 - *Ionized atomic hydrogen* (H⁺ or H II)" "H-two"
 - Molecular hydrogen (H₂): "H-two" yeah get use to it
- Regions are nearly pure (100 % H II, H I, or H₂)
- Transition regions H II \leftrightarrow H I \leftrightarrow H₂ are thin

H₂: Molecular Gas

- Cold dark clouds ($M \approx 10 1000 \text{ M}_{\odot}$)
 - -T > 10 K
 - $n \approx 10^2 10^4 \text{ cm}^{-3}$
- Giant molecular clouds $(M \approx 10^3 - 10^6 \,\mathrm{M_{\odot}})$
 - T > 20 K

Jan 18, 2007

- $-n \approx 10^2 10^4 \text{ cm}^{-3}$
- Molecular material exhibits complex structure including cores and clumps with $n \approx 10^5 - 10^9 \text{ cm}^{-3}$
- Molecular clouds are the sites of star formation

Jan 18, 2007

H II: Ionized Gas

Astronomy 596 Spring 2007

The Cycle?

dense core-

protosta

turbulent gas

outflow

star-forming molecular cloud -

shock

disk

- H II regions surrounding early-type (OB) stars
 - Photoionized
 - $-T \approx 10^4 \text{ K}$
 - $n_a \approx 0.1$ to 10^4 cm⁻³
 - Bright nebulae associated with regions of star formation & molecular clouds
- Warm Ionized Medium
 - $-T \approx 8000 \text{ K}$
 - $-\langle n_{e}\rangle \approx 0.025 \text{ cm}^{-3}$
- Hot Ionized Medium: tenuous gas pervading the ISM
 - Ionization by electron impact

YS0

HI

icy dust

interstellar

0 0

icy dust @

 $- T \approx 4.5 \text{ x } 10^5 \text{ K}$

H1

ک

0

Jan 18, 2007

 $- n \approx 0.0035 \text{ cm}^{-3}$

http://astro.berkeley.edu/~ay216/06/NOTES/ay216_2006_01_Intro.pdf

http://antwrp.gsfc.nasa.gov/apod/ap060120.html

.0

Perm

- Heavy elements
 - He (≈ 10 % by number)
 - C, N, O (\approx "cosmic" abundances)
 - Si, Ca, Fe (depleted onto grains)
 - Dust grains ($\approx 0.1 \,\mu\text{m}$ size, silicates or carbonaceous material $\approx 1\%$ by mass of ISM)
- Photons
 - CMB
 - Star light—average interstellar radiation field
 - X-rays—from hot gas & the extragalactic background
- Magnetic fields & cosmic rays

Jan	18,	2007

Astronomy 596 Spring 2007

The ISM: Moving Between Phases

Jan 18, 2007

Astronomy 596 Spring 2007

120pc

Jan 18, 2007

Astronomy 596 Spring 2007

120pc

Jan 18, 2007

Perspective

Local Star Formation Regions

Technical Diversion

- We will now take a small digression to talk about how radio astronomers do business.
- On the whole they are a logical, but perverse, group, so hold you breath and let's proceed.

Origins of Radio Astronomy

Pioneering work by Grote Reber in back yard, Wheaton, Illinois. (He died in 2002).

Jan 18, 2007

Radio Astronomy

- Origins in Electrical Engineering
- Since radio telescope is basically a total power detector, convention was to compare to an equivalent temperature that would produce same power (in Rayleigh-Jeans limit)

 $P = G \frac{2kv^2T}{c^2} \Omega_{beam}$

• Where G is the Gain of the telescope (includes area, bandwidth, gain of amplifiers) and Ω_{beam} is solid angle of main beam of antenna

Jan 18, 2007

Astronomy 596 Spring 2007

Antenna Pattern

- When you observe with a radio telescope, the data is averaged over the dish response, which is the same as the dish emission pattern.
- In the far-field (distance $\ge 2D^2/\lambda$), the beam shape is approximated as a Gaussian of width $\theta_{FWHM} = 1.22 \ \lambda/D \ (radians) =$ $2.5 \times 10^5 \ \lambda/D \ (arcsecs)$

http://aanda.u-strasbg.fr:2002/components/com_imageProcess/read.php?url=articles/aa/full/2005/35/aa1863-04/img30.gii http://www.ras.ucalgary.ca/grad_project_1996/frame-ca.html

Radio Astronomy

• Can turn it around to defined the "antenna temperature", T_A

$$T_A = \frac{P}{G} \frac{c^2}{2kv^2 \Omega_{beam}} = P_{cal} \frac{c^2}{2kv^2 \Omega_{beam}}$$

- A nice unit
 - Linear with power (unlike magnitudes)
 - Can be related to the physical temperature in the dense ISM
- T_A^{*} is also regularly used, which is the emission above the atmosphere, i.e. corrected for atmospheric attenuation, radiative loss, and rearward scattering and spillover.

Jan 18, 2007

Astronomy 596 Spring 2007

Antenna Sensitivity

• Radiometer equation

- BW is bandwidth (channel size typically) and τ is time.
- Tsys is the noise of the system (including sky), expressed in a power equivalent temperature.
- The units of σ depends on the amplitude scale being used, but we want it to be as small as possible.

RMS

- Noise is σ_{RMS}
- It is a good assumption that noise is Gaussian
- Need a simple statistic to maximize detections and minimize false positives
 - Most researchers use > 3σ as detection threshold
 - Some use $> 7\sigma$
 - Keep in mind that 3σ means that formally only 0.1% of the data (i.e. pixels/samples) will be false detections!

Jan 18, 2007

Astronomy 596 Spring 2007

What's the Diff?

- a) Single dish: Free space propagation & reflection to bring signals together in phase
- b) Phased Array: Cables of just the right length, to bring all signals together in phase

Which to Use: Telescopes

- The first paper will be single-dish observations.
- What are the advantages/disadvantages?
- It is not single-dish vs. interferometers
 Which tool for the job?

Jan 18, 2007

http://membres.lycos.fr/morbide666/godzilla/godzilla.htm

What's the Diff?

- a) Adding Interferometer or Phased Array: A single dish with missing metal.
- b) Correlation or Multiplying interferometer: All aperture synthesis radio telescopes are made up of multiple correlation interferometers

What's the Diff?

Single Dish, phased array, or • adding interferometer: The gain very susceptible to changes in receiver gain, and to changes in receiver noise temperature

• Correlation interferometer: nearly immune to receiver gain and noise changes

What's the Diff?

- Single Dish, phased array, or adding interferometer: resolution depends on size of dish, mechanical issues
- Correlation interferometer: resolution is separation of dishes, electronic issues

Astronomy 596 Spring 2007

http://www.gb.nrao.edu/sd03/talks/whysd_r1.pdf

Jan 18, 2007

Astronomy 596 Spring 2007

http://www.gb.nrao.edu/sd03/talks/whysd_r1.pdf

http://www.tuc.nrao.edu/~demerson/radiosky/radiosky.htm

All Sky Map @ 408 MHz

Astronomy 596 Spring 2007

Spatial Scale

Bottom Line

- Single Dish resolution is limited by it's size (diffraction)
- Interferometer resolution is limited by antenna separation.
- Single Dish is sensitive to large-scale emission (low spatial frequencies)
- Interferometer is less sensitive to large-scale emission depending on the minimum antenna separation
 - Can never get smallest spatial frequencies
 - Sometimes, the interferometer low spatial frequency cut-off is a good thing.
 - Sometimes, it is a bad thing

Bottom Line

- Usually, Single Dish maps are analyzed in a way that removes the lowest spatial frequencies too.
 - don't normally want the 3 K cosmic background in the data
- The relative flux in low spatial frequencies is typically far greater than that at higher spatial frequencies
- For cases where we **DO** want large scale structure, we may **HAVE TO** use a Single Dish.

Astronomy 596 Spring 2007

Last Point

- Amplitude calibration, i.e. absolute Temperature scale, between two telescopes
 - Tricky.. In the millimeter/submillimeter it can be 10-20% absolute uncertainty
 - Amplitude calibration often needs comparison of two known temperatures (sky temperature and ambient)

Jan 18, 2007

Astronomy 596 Spring 2007