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Observational ISM and Observational ISM and 

Star FormationStar Formation

This Class (Lecture 19):

Jake O'Keefe & Woojin Kwon 

( Meyer et al.)

Music: Spaceboy – Smashing Pumpkins

Next Class:

Britt Lundgren & Kijeong Yim

(Najita et al.) 
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OutlineOutline

• SED surveys

• Imaging CO in the disk

• What’s been happening to the protostar during all this disk 

evolution?
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Use Resolved Data to Guide Continuum SurveysUse Resolved Data to Guide Continuum Surveys

Andrews & Williams 2005
Mar 29, 2007
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Only substantial correlation is with overall SED and/orOnly substantial correlation is with overall SED and/or

accretion rate indicators, otherwise LARGE scatter!accretion rate indicators, otherwise LARGE scatter!

Andrews & Williams 2005
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Other “factoids”:

Submm flux highly

correlated with

the presence or

absence of IR 

excess. Almost no

disks w/weak IR

but strong submm.

Very little dependence

of MAXIMUM disk

mass on age (that is,

some fairly OLD stars

have >MMSN disks).
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Velocity gradients & gravityVelocity gradients & gravity

v(r)

Major axis ∆x

v(r)

Minor axis ∆x

v φ(r) = √ GM  r -1/2

vr(r) =√2GM  r -1/2

Pure radial infall

Pure Keplerian rotation

velocity gradient velocity gradient

vr(r) = 0

vφ(r) = 0

r
θ Circular disk viewed at 

high inclination angle

Dutrey et al. (1994)
Saito et al. (1995)

Hayashi et al. (1993)

http://feps.as.arizona.edu/pub_presentations/kobe_2005/Kobe_nbsp_05Jul13.ppt (Steve Beckwith)

Mar 29, 2007
Astronomy 596 Spring 2007

Gas?         CO/Good Dynamical, T TracerGas?         CO/Good Dynamical, T Tracer

M. Simon et al. 

2001, PdBI

The CO line shape is

Sensitive to:

Rdisk ,Mstar, Inc.

Dent et al. 2005, 

JCMT

vLSR (km/s)

T
M
B
(K
)

These can be

measured 

w/resolved images:
Beckwith & Sargent 1993

Mar 29, 2007
Astronomy 596 Spring 2007

Gas Dynamics in HL Gas Dynamics in HL TauTau: mostly : mostly 

infallinfall

HL Tau 13CO 2-1

Hayashi et al. (1993)
Koerner & Sargent (1995)
Looney et al. (2000)

1.4” FWHM

64"

2000 AU

4.4 – 5.8 km s-1 8.0 – 9.4 km s-16.2 – 7.6 km s-1

Velocity gradient

HL Tau shows an
infalling disk.

HST & BIMA image

http://feps.as.arizona.edu/pub_presentations/kobe_2005/Kobe_nbsp_05Jul13.ppt (Steve Beckwith)
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GG GG TauTau system: a rotating disksystem: a rotating disk

8.258.047.837.627.407.196.986.776.556.346.135.925.705.495.285.074.858.207.997.787.567.357.146.936.716.56.296.075.865.655.445.225.014.8

Model calculation Observed velocity map

Dutrey et al. 1994, A&A, 286, 149

13CO J=1-0

veloc
ity gr

adien
t

http://feps.as.arizona.edu/pub_presentations/kobe_2005/Kobe_nbsp_05Jul13.ppt (Steve Beckwith) Mar 29, 2007
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CO 3-2

With multiple CO lines         T gradients:With multiple CO lines         T gradients:

Qi et al. 2004

TW Hya w/SMA
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13CO 2-1/TW Hya
Data

Model 

(Rout =110 AU)

Model 

(Rout = 172 AU)
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Blue: Canonical Model  (Calvet et al. 2002, Qi et al. 2004 )

Black: SMA data

CO 2-1 CO 3-2
TemperatureContour

Tau=1  Surfaces

CO 3-2
CO 2-1

Only sensitive to disk surface layers, hard to get mass.
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Spatially Resolved Spectra: Spatially Resolved Spectra: 

TW HydraTW Hydra

Roberge et al. (2005)

The scattered light 

from the disk is 

essentially gray from 

~50 AU to ~150 AU.

This result argues for 

relatively large (>1 

µm) scattering 

particles
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During all this time, what is During all this time, what is 

happening at the protostar?happening at the protostar?

• The protostar is accreting and accreting.

• Many observations suggest that the accretion is periodic–

e.g., FU Ori objects.

• Theory is beginning to suggest that this type of accretion is 

expected (e.g. Tassis et al. 2007).

• The end of this accretion stage is thought to occur for the 

classical T Tauri stars.

Accretion and Mass Transport

Equilibrium between Fcen and Fgrav: mrω2 = Gmm*/r
2  => ω = (Gm*/r

3)1/2

→ no solid body rotation but a sheared flow, so viscous forces

→mass transport inward, angular momentum transport outward, heating

The inner disk is warm enough for large ionization: matter and magnetic field

are coupled well → accretion columns transport gas from disk to protostar

Strassmeier et al. 2005
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Remember the First CoreRemember the First Core

• Contraction of core via ambipolar diffusion initially a slow process.

• When flux ratio reaches critical threshold, contraction speeds up

– Core becomes opaque → cooling less efficient → T & P rise.

• Interior still mainly molecular hydrogen 
(core is low-mass 0.05 Msun but big, 5 AU, at this stage)

– Important for final collapse
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And The Second CoreAnd The Second Core

• With the addition of mass and further shrinking, first core reaches 
2000K, so collisional dissociation of H2 occurs.

• But, a modest increase of dissociated H2 absorbs most of the 
gravitational energy from the collapse

– Marginal increase in temperature and pressure

– A region of atomic H spreads outward from center

• Without significant T & P increase, the first core cannot keep 
equilibrium.

• The entire core becomes unstable, collapses and forms protostar.

– Significant temperature and density increase, sufficient to 
collisionally ionize most hydrogen 

– Emerging protostar is now dynamically stable.

• A protostar of 0.1 Msun has radius of several R*, T~10
5K and 

ρ~10-2g cm-3
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ProtostarProtostar

• Luminosity is dominated by accretion 

– There are small/negligible contributions from early fusion 
processes and contraction

• The gravitational energy released per unit accreted mass is essentially 
the gravitational potential GM*/R*, so

– Lacc = G(dM/dt)M*/R*

= 61Lsun ((dM/dt)/10-5Msun/yr) (M*/1Msun) (R*/5Rsun)
-1

Protostellar MassProtostellar Mass--RadiusRadius

• Adding infalling mass shells, the protostar can be described by 

its entropy profile s(Mr), reflecting the changing conditions at 

the accretion shock.

• Since s represents heat content of each added mass shell, an 

increase of s(Mr) causes a swelling of the protostar.
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Protostellar MassProtostellar Mass--Radius Radius 

• In the absence of nuclear burning, an 

increasing s(Mr) arises naturally with rising 

M*.

• The velocity of the infalling gas and hence 

the accretion shock and Lacc increases.

→ Protostellar radius 

increases with time.

• Suppose initial core very large, then lower 

infall velocity

- Low Lacc and s(Mr) would dip at     

beginning of protostellar evolution

- Initial decrease of R*

- Opposite effect for very small initial 

state. 



Deuterium BurningDeuterium Burning

• The ratio M*/R* rises fast and interior temperatures 

increase again.

• Nuclear reactions start at center 

(at ~0.3 Msun deuterium burning at ~106K).

• Convection begins because deuterium fusion produces too 

much energy to be transported radiatively through opaque 

interior

• Protostellar interior is well mixed and provides its own 

deuterium to center for further fusion processes. 

• However, convection is local phenomenon, some regions 

can be convective whereas others remain radiatively stable.


