

Mar 29, 2007

Spatially Resolved Spectra: TW Hydra

Mar 29, 2007

The scattered light from the disk is essentially gray from ~50 AU to ~150 AU.

This result argues for relatively large (>1 µm) scattering particles

Roberge et al. (2005)

During all this time, what is happening at the protostar?

- The protostar is accreting and accreting.
- Many observations suggest that the accretion is periodice.g., FU Ori objects.
- Theory is beginning to suggest that this type of accretion is expected (e.g. Tassis et al. 2007).
- The end of this accretion stage is thought to occur for the classical T Tauri stars.

Mar 29, 2007

Astronomy 596 Spring 2007

Astronomy 596 Spring 2007

The inner disk is warm enough for large ionization: matter and magnetic field are coupled well \rightarrow accretion columns transport gas from disk to protostar

Remember the First Core

- · Contraction of core via ambipolar diffusion initially a slow process.
- · When flux ratio reaches critical threshold, contraction speeds up
 - Core becomes opaque \rightarrow cooling less efficient \rightarrow T & P rise.
- Interior still mainly molecular hydrogen (core is low-mass 0.05 Msun but big, 5 AU, at this stage)
 - Important for final collapse

And The Second Core

- With the addition of mass and further shrinking, first core reaches 2000K, so collisional dissociation of H₂ occurs.
- But, a modest increase of dissociated H₂ absorbs most of the gravitational energy from the collapse
 - Marginal increase in temperature and pressure
 - A region of atomic H spreads outward from center
- Without significant T & P increase, the first core cannot keep equilibrium.
- The entire core becomes unstable, collapses and forms protostar.
 - Significant temperature and density increase, sufficient to collisionally ionize most hydrogen
 - Emerging protostar is now dynamically stable.
- A protostar of 0.1 Msun has radius of several R*, T~10⁵K and $\rho{\sim}10^{-2}g$ cm-3

Mar 29, 2007

Astronomy 596 Spring 2007

Protostellar Mass-Radius

- Adding infalling mass shells, the protostar can be described by its entropy profile s(M_r), reflecting the changing conditions at the accretion shock.
- Since s represents heat content of each added mass shell, an increase of $s(M_r)$ causes a swelling of the protostar.

- · Luminosity is dominated by accretion
 - There are small/negligible contributions from early fusion processes and contraction
- The gravitational energy released per unit accreted mass is essentially the gravitational potential GM_{*}/R_{*}, so
 - $L_{acc} = G(dM/dt)M_*/R_*$
 - = 61Lsun ((dM/dt)/10⁻⁵Msun/yr) (M_{*}/1Msun) (R_{*}/5Rsun)⁻¹

Mar 29, 2007

Astronomy 596 Spring 2007

Protostellar Mass-Radius

- In the absence of nuclear burning, an increasing $s(M_r)$ arises naturally with rising M_*
- The velocity of the infalling gas and hence the accretion shock and L_{acc} increases.

 \rightarrow Protostellar radius

increases with time.

- Suppose initial core very large, then lower infall velocity
 - Low L_{acc} and s(M_r) would dip at beginning of protostellar evolution
 - Initial decrease of R*
 - Opposite effect for very small initial state.

Astronomy 596 Spring 2007

Deuterium Burning

- The ratio M_{*}/R_{*} rises fast and interior temperatures increase again.
- Nuclear reactions start at center (at ~0.3 Msun deuterium burning at ~10⁶K).
- Convection begins because deuterium fusion produces too much energy to be transported radiatively through opaque interior
- Protostellar interior is well mixed and provides its own deuterium to center for further fusion processes.
- However, convection is local phenomenon, some regions can be convective whereas others remain radiatively stable.