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Observational ISM and Observational ISM and 

Star FormationStar Formation

This Class (Lecture 15):

Nick Indriolo/Alfredo Zenteno

Music: Sonne – Rammstein

Next Class:
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OutlineOutline

• Viscosity in the disk

• SED fits (more)

• Flaring Disks: Why do we need those anyway?
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Disk StepsDisk Steps

• We established that due to a little of rotation, we expect to 

see a circumstellar disk surrounding the protostar.

• The outflow driving mechanisms focus on disk winds 

→ disks are there in the youngest protostars!

• Nice.

• But, we also know that there is ongoing accretion in these 

systems.

• How does the disk accrete onto the star?

• Must depend on the rate of angular momentum transport in 

the disk.  (kinda poorly understood)
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Outward Angular Momentum Outward Angular Momentum 

TransportTransport

A B

Ring A moves faster than ring B. 

Friction between the two will try 

to slow down A and speed up B. 

This means: angular momentum 

is transferred from A to B.

Specific angular momentum for 

a Keplerian disk: 

l = rvφ = r
2ΩK = GM* r

So if ring A looses angular momentum, but is forced to remain on

a Kepler orbit, it must move inward! Ring B moves outward, 

unless it, too, has friction (with a ring C, which has friction with D, 

etc.).
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Disk ViscosityDisk Viscosity

• Molecular viscosity is so small that disk evolution would 

be too slow (tacc ~ 10
13 yrs).

• Have to consider other mechanisms for viscosity

1. Turbulent Viscosity (Lin & Papaloizou 1995)

− But may work the wrong way (transport angular 

momentum inward; e.g. Stone & Balbus 1996)

− Also Keplerian motions tend to stabilize the disk (no 

turbulence)

2. Current paradigm is magnetic instabilities in the disk

– Developed for accretion disks by Balbus & Hawley 

(1991)
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MagnetoMagneto--rotational Instability rotational Instability 

(MRI)(MRI)
(Also often called Balbus-Hawley instability)

If a weak magnetic pull exists between two gas-

parcels A and B on adjacent orbits, and the parcels 

are perturbed, and the magnetic tension increase.  

The effect is that A moves inward and B moves 

outward: a pull causes them to move apart!

A

B

The lower orbit of A causes an increase in its 

velocity, while B decelerates. This enhances their 

velocity difference! This is positive feedback: an 

instability.
A

B

Causes turbulence in the disk
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Spring AnalogySpring Analogy

http://astsun.astro.virginia.edu/~tsi6a/research/mri_iap_jun_2005.pdf
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MagnetoMagneto--rotational Instability rotational Instability 

(MRI)(MRI)

Johansen & Klahr (2005)

However, there is still 

some debate on the 

importance of MRI 

(Hartmann et al. 2006)
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Back to Back to SEDsSEDs

XX Cha

Wavelength (µm)

ν3 blackbody

e.g. Adams, Lada, & Shu (1988)
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νFν
Excess emission

over photosphere

Far IR optical depth: 

τ ~ 1 at 100 µm
τ ~ 0.01 at 1 mm

∴ τ ≥ 100 at 1 µm
⇒ AV≥ 300

Observed AV ~ 3

∴ clear line of sight to 

star and dust.

http://feps.as.arizona.edu/pub_presentations/kobe_2005/ Mar 8, 2007
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Flat Irradiated DisksFlat Irradiated Disks

α

α ≅
0.4 r*

r
Irradiation flux:

Firr =α
L*

4π r2

Cooling flux:

Fcool =σT
4

T =
0.4 r*L*

4πσ r3
 

 
 

 

 
 

1/ 4

T ∝ r−3 / 4

Similar to active accretion disk, but flux is fixed.

Lynden-Bell & Pringle (1974)

Adams, Lada, & Shu (1988)

flat, black disk
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Disk SED: Multicolor RegionDisk SED: Multicolor Region

q =3/4  ⇒ νFν ~ ν4/3

L*

Bν(T)

T(r) ~ r-3/4
Thin disk

ν4/3

Planck ν31

10

100
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1 10 100

Wavelength (µm)

νFν

νFν ∝ν
(4q−2)/qFrom before

Using assumed temperature profile:

T(r)∝ r−q

Adams, Lada, & Shu (1988)
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SED FitsSED Fits

Thin disk νFν ~ ν4/3

• most SEDs flatter than ν4/3

• some SEDs very flat, νFν ~ ν
0

Adams, Lada, & Shu (1988)

Beckwith et al. (1990)

ν4/3

Planck ν3

XX Cha

1
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100

1000

1 10 100

Wavelength (µm)

νFν

The SED from a theoretically thin 

black disk almost never fits the 

observations of young stars with 

excess infrared emission!

http://feps.as.arizona.edu/pub_presentations/kobe_2005/
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SED FitsSED Fits

• most SEDs flatter than ν4/3

• some SEDs very flat, νFν ~ ν
0

Adams, Lada, & Shu (1988)

Beckwith et al. (1990 & 1999)

The SED from a theoretically thin 

black disk almost never fits the 

observations of young stars with 

excess infrared emission!

HD104237

Beckwith et al. 1996, 1999 Mar 8, 2007
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Gaps in Disk Gaps in Disk SEDsSEDs

Full line: no gap

Long-dashed: gap 0.75 to 1.25 AU

Short-dashed: gap 0.5 to 2.5 AU

Dotted: gap 0.3 to 3 AU

To become detectable gap has to

cut out at least a decade of disk

size.
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Additional FIR excessAdditional FIR excess

- Larger inner or smaller outer disk radii even increase the discrepancy.

- Data indicate that outer disk region is hotter than expected from flat, 

black disk model → Disk flaring

Mar 8, 2007
Astronomy 596 Spring 2007

Flared disksFlared disks

flaring

irradiation

heating vs
cooling

vertical
structure

● Kenyon & Hartmann 1987
● Calvet et al. 1991;  Malbet & Bertout 1991
● Bell et al. 1997; 
● D'Alessio et al. 1998, 1999
● Chiang & Goldreich 1997, 1999; Lachaume et al. 2003
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Flaring Disk: GeometryFlaring Disk: Geometry

r

angle θ'

Flared, 

black disk

Star luminosity, L*

• Absorbed radiation ~ sinθ' à sinθ
• Tflare(r) > Tflat(r), especially at large r

BUT

→ Cannot account for flat SEDs (6/15 < 1/2)           

→ Still assumes “black” disk (no radiative transfer)

~ r2/7
h

r

Ti(r) ~ r
-6/15

h

Kenyon & Hartmann 1987
http://feps.as.arizona.edu/pub_presentations/kobe_2005/ Mar 8, 2007
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≈ 0.9 
r

209 AU(         )
13

45h

r

Flaring Disk: Radiative TransferFlaring Disk: Radiative Transfer

r

angle θ '

∆ Interior τ > 1 in 
infrared

Star luminosity, L*

• Optical light absorbed τV ~ 1, τIR << 1

• Small grains "bare" => Tgrain > Tblackbody

• Disk emission τIR < 1  (5 - 100 µm)

Still cannot account for very flat

SEDs, but does fit majority. ≈ 21 K
r

209 AU(         )
19

45
Ti(r)

Surface τ ~ 1 in 
optical

Prediction: disk surface emission is optically thin

Chiang & Goldreich 1997
http://feps.as.arizona.edu/pub_presentations/kobe_2005/
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The Surface Layer The Surface Layer 

Disk has a hot surface layer which absorbs all stellar radiation.

Half of it is re-emitted upward (and escapes); half of it is re-

emitted downward (and heats the interior of the disk).
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Differences in the SEDDifferences in the SED

Chiang & Goldreich 1997
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Two layers Two layers 

Model has two 

components:

• Surface layer

• Interior

Chiang & Goldreich 1997
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Affecting the SEDAffecting the SED

nvert ~ exp(z
2/2h2)

Chiang & Goldreich 1997
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Fitting GM Fitting GM AurAur

Chiang & Goldreich 1997


