Observational ISM and **Star Formation**

This Class (Lecture 14):

Kristen Samuels/Britt Lundgren

Next Class:

Nick Indriolo/Alfredo Zenteno

Music: Rocket Man – Elton John

Astronomy 596 Spring 2007

Mar 6, 2007

Astronomy 596 Spring 2007

Outline

Remember Outflows?

- Outflows and jets are ubiquitous and necessary in star formation
- They transport angular momentum away from protostar.
- The are likely formed by magneto-centrifugal disk-winds.
- Collimation is caused by Lorentz forces.
- Gas entrainment can be due to various processes: turbulent entrainment, bow-shocks, wide-angle winds, etc...
- They inject significant amounts of energy in the ISM, may be important to maintain turbulence.
- They disrupt their maternal clouds, eventually.

Outflows in Orion: Impacts?

Astronomy 596 Spring 2007

Mar 6, 2007

Mar 6, 2007

Mar 6, 2007

HH211

- Nicely seen in both H₂ and molecules.
- Panels show gas at 2 different velocity ranges: low (top) and high (bottom)
- Gueth et al. 1999

Jet Entrainment in HH211

• Jet-like SiO emission always at larger velocities than CO at the same projected distance

From Hirano et al. 2006, Palau et al. 2006, Chandler & Richer 2001, Gueth et al. 1999, Shang et al. 2006

Mar 6, 2007

http://www.mpia.de/homes/beuther/lecture ss05.html

Mar 6, 2007

General Outflow Properties

- Jet velocities 100-500 km/s ⇔ Outflow velocities 10-50 km/s
- Estimated dynamical ages between 10³ and 10⁵ years
- Sizes between 0.1 and 1 pc
- Force provided by stellar radiation too low (middle panel)
 - → non-radiative processes necessary!

Chemistry: L1157 (arcsec) B2 🗖 $\begin{array}{c} \text{CN} \\ (1, \frac{3}{2} \rightarrow 0, \frac{1}{2}) \end{array}$ DCO⁺ (2→1) N₂H⁺ (1→0) HCO+ (1→0)() $(3_{12}\rightarrow 2_{21})$ -150 SO (4₃→3₂) SO₂ (5₁₅→4₀₄) SiO (3→2) CS (3→2) CH₃OH (3_k→2_k) HCN (1→0) DEC -100 R.A. offset (arcsec) Bachiller et al. 2001 Astronomy 596 Spring 2007

Class 0
Astronomy 596 Spring 2007 Wh

Whitney et al. 2003

Collapsing Cloud + Star + Disk

Class I Astronomy 596 Spring 2007

Whitney et al. 2003

Collapsing Cloud + Star + Disk

Class II

Astronomy 596 Spring 2007

Whitney et al. 2003

Star + Disk

Class III

Astronomy 596 Spring 2007

Whitney et al. 2003

Multi-Color Blackbody Disk SED

$$I_{v}(r) = B_{v}(T(r))$$

Take an annulus of radius r and width dr covers a solid angle:

$$d\Omega = \frac{2\pi r dr}{d^2} \cos i$$

Mar 6, 2007

and flux is:

$$F_{\nu} = I_{\nu} d\Omega$$

Total flux observed is then:

$$F_{\nu} = \frac{2\pi \cos i}{d^2} \int_{r_{\rm in}}^{r_{\rm out}} B_{\nu}(T(r)) r dr$$
Mar 6, 2007
Astronomy 596 Spring 2007

Multi-Color Blackbody Disk SED

Astronomy 596 Spring 2007

Mar 6, 2007

Mar 6, 2007

Multi-Color Blackbody Disk SED

Rayleigh-Jeans region:

Slope is the Planck function:

$$\nu F_{\nu} \propto \nu^3$$

Multi-color region:

Assume a temperature profile of disk:

$$T(r) \propto r^{-q} \longrightarrow r \propto T^{-1/q}$$

 $T(r) \propto r^{-q} \longrightarrow r \propto T^{-1/q}$ and surface: $S \propto r dr \propto r^2 \propto T^{-2/q} \propto v^{-2/q}$ Emitting surface:

Peak energy Planck: $\max(\nu B_{\nu}) \propto T^4 \propto \nu^4$

Location of peak Planck: $\nu \propto T$

$$\longrightarrow \nu F_{\nu} \propto S \max(\nu B_{\nu}) \propto \nu^{-2/q} \nu^4 = \nu^{(4q-2)/q} \longrightarrow \nu F_{\nu} \propto \nu^{(4q-2)/q}$$

Disk with finite optical depth

Multi-color part stays roughly the same, because of energy conservation

Rayleigh-Jeans part modified by slope of opacity. Suppose that this slope is:

$$\kappa_{\nu} \propto \nu^{\beta}$$

Then the observed intensity and flux become:

$$I_{\nu}(r) = (1 - e^{\tau_{\nu}})B_{\nu} \approx \tau_{\nu} B_{\nu} \propto \kappa_{\nu} B_{\nu}$$

 $\nu F_{\nu} \propto \kappa_{\nu} \nu B_{\nu} \propto \nu^{3+\beta}$

Mar 6, 2007