Astronomy 330

• Ryan Ruddell

This class (Lecture 19): Origin of Intelligence

Ryan Ruddell

Next Class: Origin of Intelligence 2 Adam Flanders

HW8 is due Thursday

Music: Intelligent Guy- Butthole Surfers

Outline

- Two types of cell life: Eukaryotes and Prokaryotes.
- All life can be divided into 3 types:
 - Bacteria
 - Archaea
 - Eukarya
- Genetic diversity of life... leads to intelligence

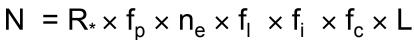
Drake Equation

Presentations

Star

formation

rate


That's 2.7 life systems/year

# of			
advanced			
civilizations			
we can			
contact in			
our Galaxy			
today			

<i>''</i> 01
dvanced
vilizations
we can
contact in
ur Galaxy
today

of stars with planets

Fraction

Earthlike planets system

Fraction

on which that evolve life arises intelligence

Fraction

Lifetime of advanced communcivilizations icate

20 stars/

yr

0.8 systems/ star

2 x 0.11 = 0.22

system

0.775 life/ planets/ planet intel./ life

comm./ intel.

yrs/ comm.

Evolution of Intelligence

What is intelligence?

Evolution of Intelligence

- What is intelligence?
- "The ability to model the world, including the organism's own self" is a workable definition.
 - A spectrum of ability
- Crucial development for the full spectrum of intelligence is the diversity of life on Earth.
- Intelligence is not a requirement of life.

http://www.amonline.net.au/insects/images/site/insect1.ipg

Evolution of Intelligence

- First, we will examine the diversity of life; the fossil record shows a huge diversity with time.
- Organisms range from bacteria to humans.
- 1.9 x 10⁶ known species
 - Insects account for most (1.0 x 10⁶)
 - Estimated that only 10% are known.
 - Bacteria are hard to classify only 9000 species so far.

http://www.amonline.net.au/insects/images/site/insect1.jpg http://en.wikipedia.org/wiki/Bacterium#Classification_and_identification

Evolution of Intelligence

- Remember that all of these organisms use nearly identical genetic codes, so life descended from a common ancestor.
- Primary challenge of biology is to explain how life from a single type of organism, diversified so much.
- Evolution is the primary concept.

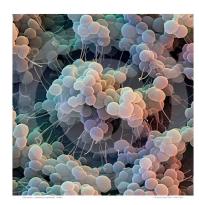
Life

If we took all the biomass of all the animals, and all the biomass of all the viruses, bacteria, protozoa, and fungi— who weighs more?

Around 90% of all biomass on the Earth is in the smallest and simplest lifeforms.

You or not you?

- This is more non-you cells in your body than you cells in your body!
 - You are outnumbered 10 to 1!
 - Mostly on your skin and in your digestive track



Bacteria under a toe-naii
http://news.nationalgeographic.com/news/2007/02/070206-skin-microbes.htm

Bacteria

- 40 million bacterial cells in a gram of soil
- 1 million bacterial cells in a milliliter of fresh water
- Something like five nonillion (5×10^{30}) bacteria in the world.

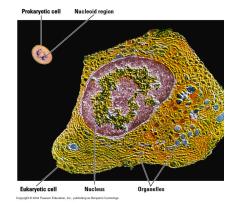
Staph bacteria http://www.scharfphoto.com/fine_art_prints/archives/000608.php

Question

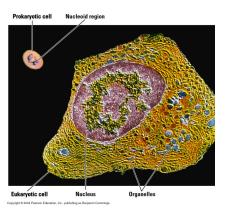
What is a fair definition of intelligence?

- a) Able to get an A on the midterm.
- b) Able to develop a new iphone application
- c) Leslie
- d) The ability to model the world, including the organism's own self
- e) The ability to model the world into food or threat

Classification of Life



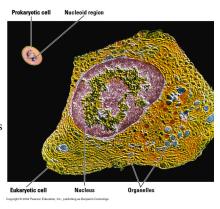
Classification of Life


Two types

- 1. Prokaryotes
- 2. Eukaryotes

1. Prokaryotes

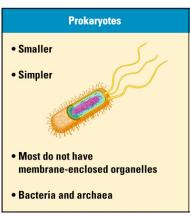
- No cell nucleus
 – DNA floating around
- Always single-cell creatures like bacterium
- Came first
- Outnumber and outweigh the second class (eukaryotes)



Classification of Life

2. Eukaryotes

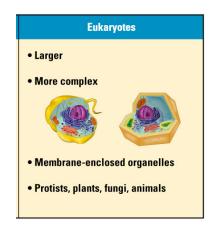
- Have a cell nucleus, a membrane to protect the DNA
- Basis of all multi-cell creatures
- Also some single-cell creatures like amoebas.
- DNA arranged into chromosomes in nucleus– 23 pairs for humans.



Prokaryotes

Divided into 2 domains:

- 1. Eubacteria or "true" bacteria
- 2. Archaea
 - 20% of the world's biomass.
 - Thought to be the oldest surviving organisms.
 - Often found in harsh environments: hot springs, undersea vents, salty seashores, etc, which were probably more common on the early Earth.
 - Some evidence that ancient organisms were heat-lovers (maybe)


Carl Woese here at Illinois, discovered Archaea scheme.

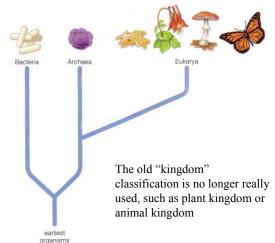
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Eukaryotes

• All animals, plants, and fungi.

Genetic Relations

- This is a major change from the old methods of assigning groups based on outward form and anatomy.
- Instead based on studies of the genetic code.
- Surprise: Human and chimpanzees share about 99% of the same DNA, and about 97% with mice.
- Surprise: 2 species of fruit fly look very much alike, but only share about 25%. Some of this differences is due to "junk" DNA.



http://www.uglybug.org/index00.shtml http://www.pritchettcartoons.com/fruitfly.htm

3 Domains of Life

- Genetically speaking, Archaea and Eukarya are more similar to one another than are Bacteria and Archaea
- Implies that Archaea and Bacteria split and then all Eukarya split from Archaea
- A major implication for the evolution of life on Earth

Question

What type of life is more closely related to us?

- a) Archaea
- b) Eubacteria
- c) True Bacteria

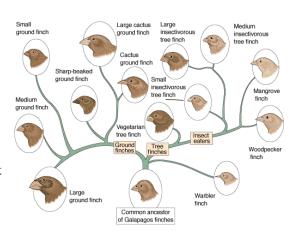
Changes in Bio-Systems

- Today's view: evolution is the most important and unifying property of life.
- Anaximander (c. 610-547 BC): life arose in water and gradually became more complex
- Empedocles (c. 492-432 BC): survival of the fittest (but, "a good idea stated within an insufficient theoretical frame loses its explanatory power and is forgotten", Hans Reichenbach)
- Aristotle (384-322 BC): species are fixed and independent of each other → evolution discarded for 2000 years
- Fossil record: slowly broke down the Aristotelian theory

For the Species Survival

2 Elimination of individuals with certain traits

- Darwin (1809-1882) & Malthus (1766-1834):
 - Populations can grow faster than food sources can support them.
 - Creates a struggle for survival that can wipe out competitors.
 - Individual variations has advantages or disadvantages in the struggle for survival
 - Natural selection can create unequal reproductive success


ncreasing frequency of traits that enhance survival and reproductive success

Copyright @ 2001 by Benjamin Cummings, an imprint of Addison Wesley

Filling the Niche with Finch

- Other Evidence:
 - Adapted species in the Galápagos Islands, in particular finches
 - Artificial breeding of house/farm animals and vegetables
- DNA is really the mechanism of natural selection, but evolution requires both heredity and environment

Mutant Sex

- Mutations from changes in the bases of DNA.
- Usually copying errors, but also radiation radioactivity, cosmic rays, chemical agents, or UV light.
- About 3 mutations per person per generation.
- Most mutations are neutral, changes in the *junk* DNA.
- Why is sex important to this class?

http://www.mutantx.net/features/press_vw_sexv.htm

Mutant Sex

- Sexual reproduction leads to greater genetic diversity
 – a difference between prokaryotes and eukaryotes?
- Asexual reproduction does not allow 2 new and beneficial mutations to combine.
- Blackberries have not changed much in 10 millions years, but sexual plants have produced: raspberries, thimbleberries, cloudberries, dewberries, etc.
- Sex is useful in the process, but the mutations are still key.

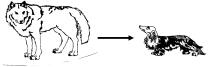
http://www.alcasoft.com/arkansas/blackberry.html

Question

Sex in space, or on Earth, is important because

- a) sex, although fun, also stimulates gene mutations.
- b) it allows the genetic material of the better organisms to survive.
- c) mutations can only occur in sexual reproduction.
- d) it leads to greater genetic diversity and an increase of positive mutations in the offspring.

Does Mutant Sex take a long time?

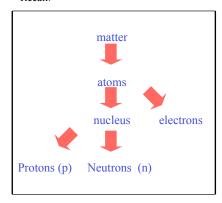


Cabbage, kale, kohlrabi, brussels sprouts, cauliflower and broccoli have same common ancestor—wild mustard. All bred by humans on a very short time scale.

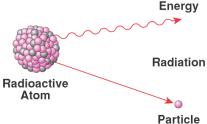
This is selective breeding, but still the potential is in the DNA.

Or domestic lap dogs from wolves in about 5000 years.

Comparing Ages



- Important to understand history of Earth life is the ability to age different components
- Can be difficult
- Radioactive dating....
 - ¹⁴C for the last 60,000 years
 - 40 K and 235 U for 100's of millions of years


Radioactive Dating

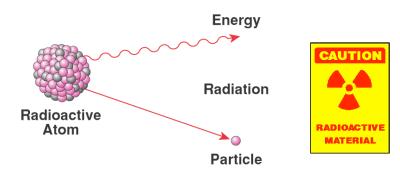
Recall:

- Most atomic nuclei stable
- But some nuclei are *unstable*, \Rightarrow decay to new nucleus "radioactive"

The Law of Radioactive Decay

As radioactive "parent" decays, the number of decay product or "daughters" increases

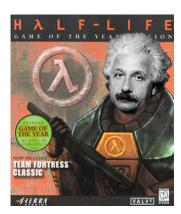
Decay is a good "clock"


- Each radioactive species has different "tick"
- Rate="half-life"
- Exponential decay from original population of n₀

Decay Rule **Start out** with N parents, 0 daughters

Time t since start	# parents	# daughters
0	N	0
t _{1/2}	½ N = half as much	½ N have appeared
2t _{1/2}	1/4 N = half again as much	³/4 N
3t _{1/2}	1/8 N	7/8 N
30t _{1/2}	About N/109	99.9999999% N

Radioactive Decay Examples



Carbon-14

- Cosmic rays from space are constantly hitting the Earth
- React with ¹⁴N in atmosphere to create ¹⁴C.
- Decays back to ¹⁴N with half life of 5730 years.
- But, there is an equilibrium in abundance
- In atmosphere, the ¹⁴C is mostly in ¹⁴CO².

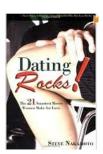
http://bbspot.com/Images/News_Features/2003/12/half-life.jpg

Carbon-14

- Ì
- Plants take in ¹⁴CO² with the ¹²CO² and other animals eat the plants.
- So, every living creature has a equilibrium ratio of ${}^{14}\text{CO}^2/{}^{12}\text{CO}^2$
- When the organism dies, the ¹⁴C decays to ¹⁴N. By measuring how much ¹⁴C remains, you can date the fossil.
- This works well to about 60,000 years.
 - Viking remains in Newfoundland
 – 500 yrs before Columbus.
 - Shroud of Turin to 1330 AD

http://web.mit.edu/smcguire/www/newfoundland/newf16.html

Dating Rocks


- But these only work with volcanic layers.
- So, the ages of fossils are interpolated from ages of volcanic layers above and below them.

Dating Rocks

- First you ask them out?
- No, you need a radioactive decay that has a longer half-life than ¹⁴C.
- Potassium-argon
 - 40 K decays to 40 Ar with a 1200 Myr half-life
- Uranium-lead
 - ²³⁵U to ²⁰⁷Pb with 700 Myr half-life.

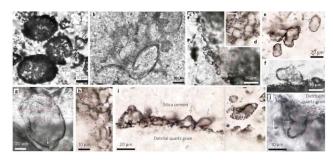
Era	Period	Myr Ago	Life Forms	Events
Cenozoic	Quaternary	2	H. Sapiens	Ice ages
	Tertiary	65	Primates	Extinction of Dinosaurs
Mesozoic	Cretaceous	136	Birds	S. Atlantic open to 1900 miles
	Jurassic	190		N. Atlantic open to 600 miles
	Triassic	225	Mammals	Continental drift
Paleozoic	Permian	280	Reptiles	Pangaea breaks up
	Carboniferous	345	Amphibians	Formation of coal
	Devonian	395	Insects	
	Silurian	430	Land Plants	
	Ordovician	500	Fish	
	Cambrian	543	Trilobites	
Precambrian		545	Small Shelly Fossils	
		580	Ediacarans	
		600-800	Multicellular life	Snowball Earth episodes

Increase of Complexity

- Ì
- Last table showed only the last 800 Myrs.
- The more complex and intelligent organisms appeared towards the end.
- For many years it was thought that life originated in the Cambrian era, then Precambrian fossils were found.
- Then, it was realized that there were single-celled fossils that required microscopes.

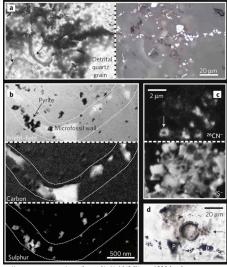
Concepts

- As prokaryotes are simpler than eukaryotes, we expect them to exist first.
- Identifying fossil prokaryotes is difficult: they're tiny!
- All of the macroscopic life only arose in the last 600 Myrs– 1/6th of the history of life on Earth.


http://www.earth.ox.ac.uk/research/geobiology/geobiology.htm

Myr Ago	Era	Event
Now	Cenozoic	
	Mesozoic	
	Paleozoic	Macroscopic life/Snowball Earth
	Precambrian	
1000		Worm tracks
		Multicellular algae
		Eukaryotes certain
		Sexual reproduction
2000		Eukaryotes possible
	Protozoic	Oxygen-rich atmosphere
		Snowball Earth
		Formation of continents
3000	Archean	Life begins?
4000		Formation of Oceans
		Bombardment decreases
		Frequent impacts
	Hadean	Earth formed

Oldest Fossils



- Best examples of early fossil life are from microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia!
- Feb 2011

Oldest Fossils

 Best examples of early fossil life are from microfossils of sulphurmetabolizing cells in 3.4-billion-year-old rocks of Western Australia!

http://www.nature.com/ngeo/journal/v4/n10/full/ngeo1238.htmlhttp://www.nature.com/ngeo/journal/v4/n10/full/ngeo1238.html

Making Oxygen!

- The early prokaryotes played a crucial role for life on Earth by producing oxygen through photosynthesis.
- Cyanobacteria (also called bluegreen algae) changed the world!
- Lived in colonies that formed mats or films, growing into large structures called stromatolites.
- Still around, but much more common before 700 Myrs ago.

Early Earth

- We've talked about the Early Earth's atmosphere– mostly N and CO₂, which dominated the atmosphere for the first 3 billion years!
- But life was polluting the planet even then.

Making Oxygen!

- About 2 billion years ago atmosphere became oxygenated!
- Probably killed off many species.
- But, oxygen was new and important step in intelligence
- It allowed a new energy extraction method
 - Aerobic (using oxygen) metabolism
 - More complex life
 - Created ozone layer (dry land now an option for life on Earth!)

Relationship to ETs

- Ì
- Would evolution on other planets have a similar timescale?
- Evolution is not a deterministic process.
- Selection seems to be mostly luck, rather than adaptation.
- On the other hand, many traits have developed in several lineages— warm blood and eyes.
- Some say that intelligence seems to increase in many lineages, so it is likely that if life exists then intelligent life exists.
- On the other hand, the plant kingdom never developed neurons.

Summary

- This following slides are from: http://www.udayton.edu/~INSS/
- Nice timeline of life on Earth.

Question

The Early Earth's oxygen in our atmosphere came from

- a) trees.
- b) colonies of cyanobacteria.
- c) comets.
- d) colonies of plankton.
- e) outer space.

4500 million years ago (4.5 billion years ago) Accretion of Earth Formation of the Moon

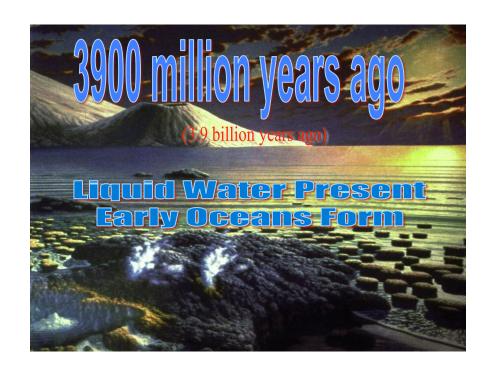
4400 million years ago (4.4 billion years ago) Accretion of Earth

4300 million years ago)

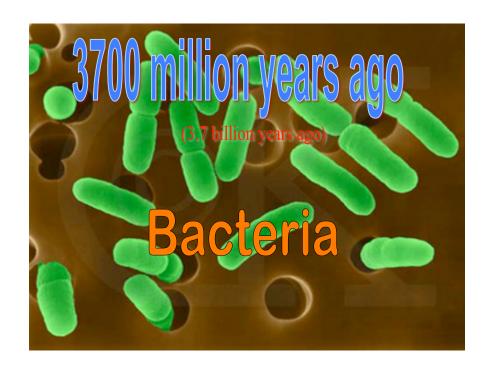
(4.3 billion years ago)

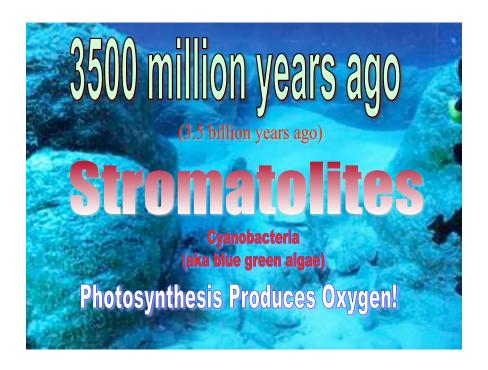
Iron Catastrophe
Earth separates into layers

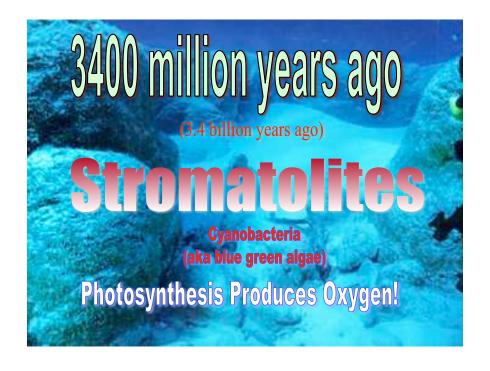
4200 million years ago

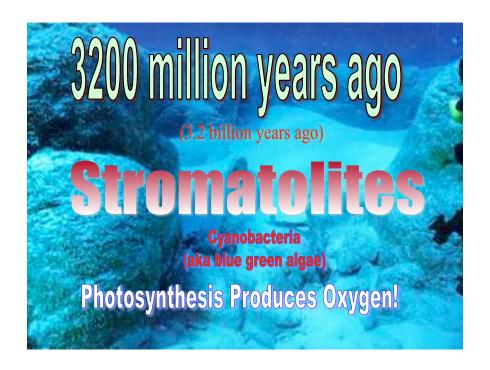

(4.2 billion years ago)

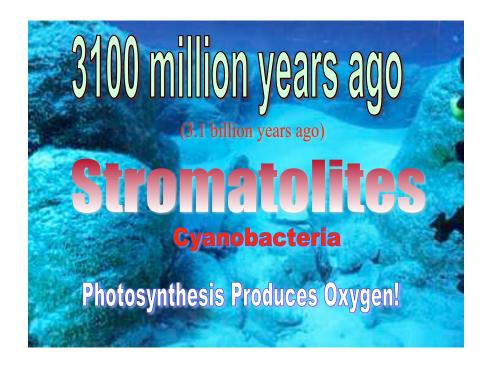
Early Atmosphere

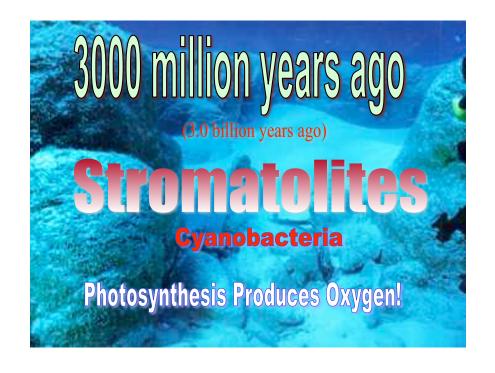

No Life

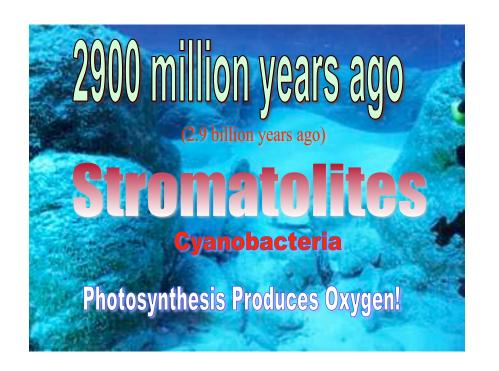


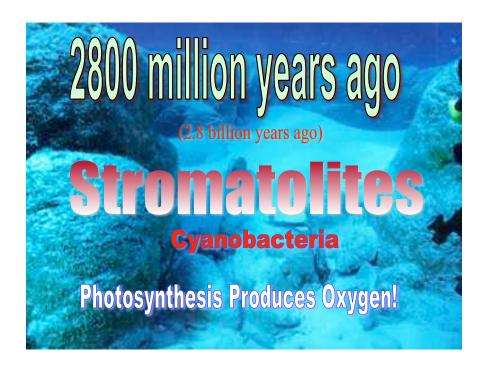


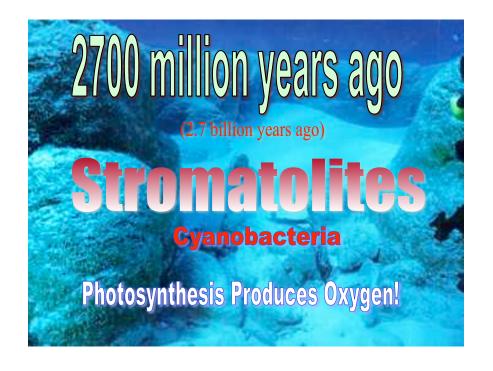


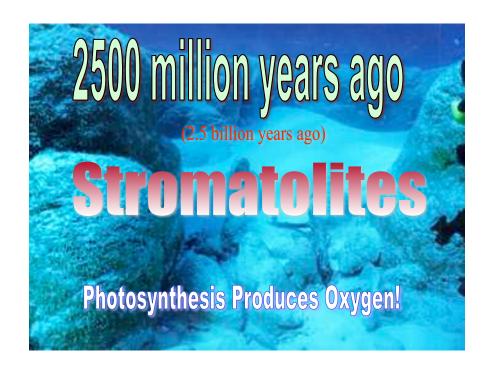


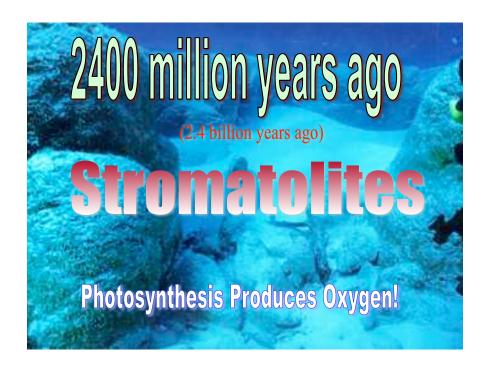




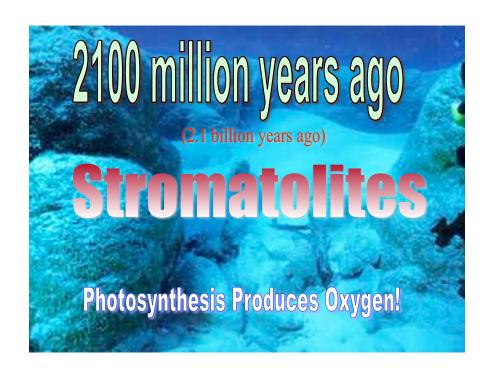


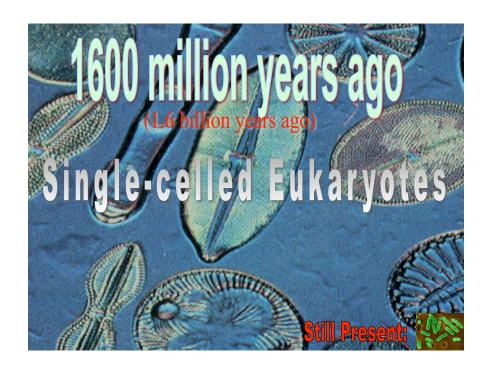


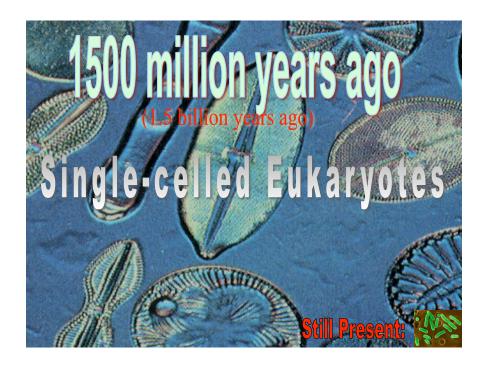


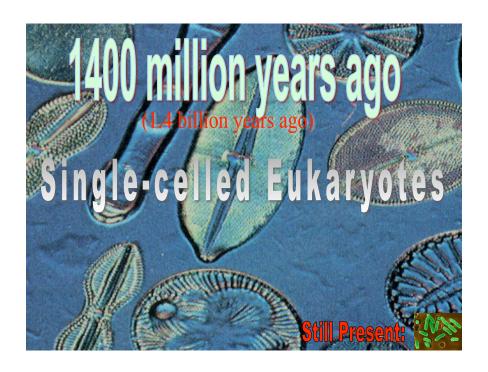


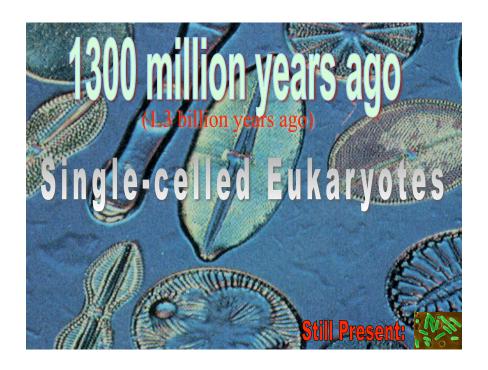


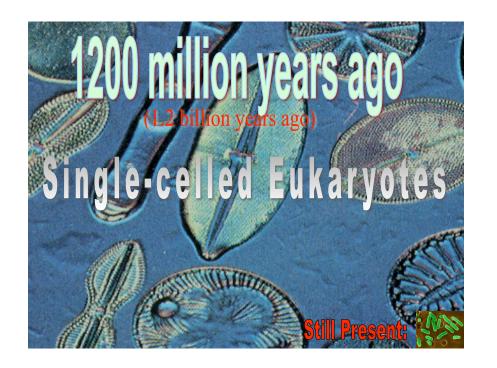


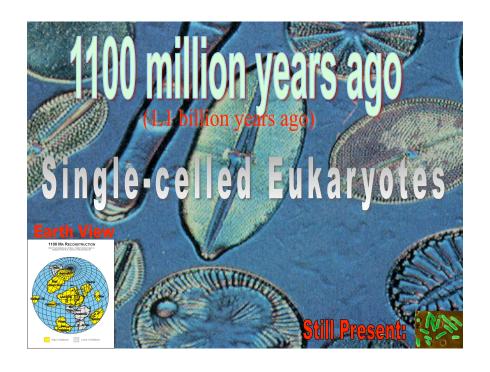


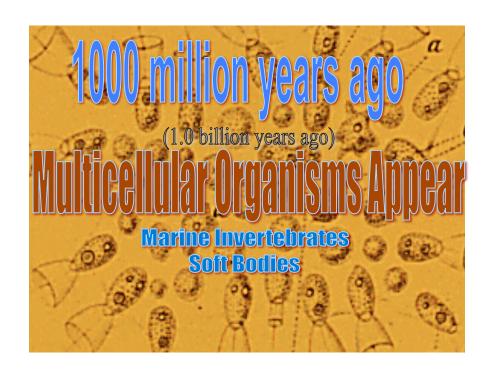




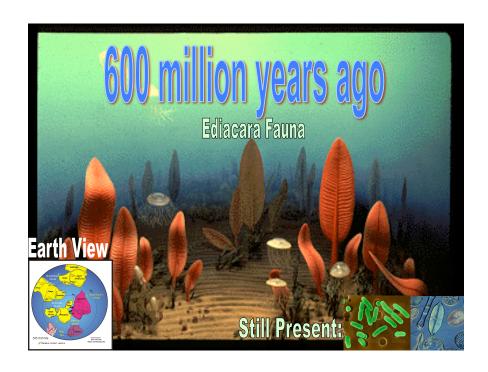


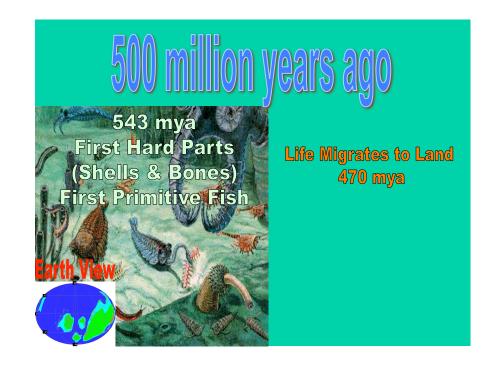


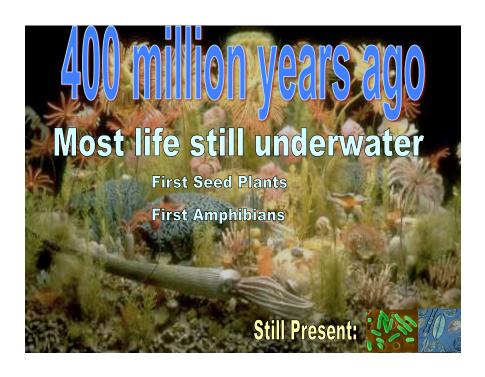


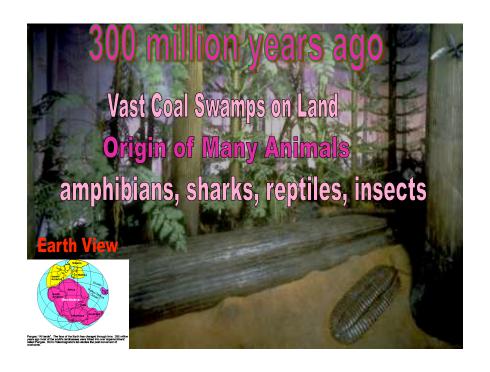




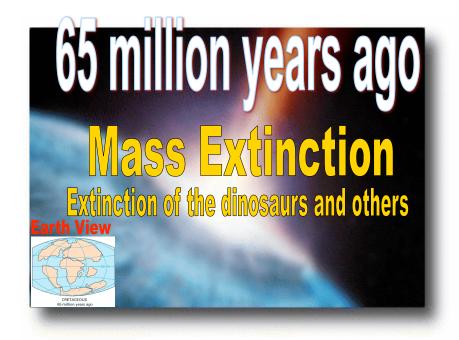








438 million years ago Mass Extinction


367 million years ago
Mass Extinction

