Astronomy 330

<u>This class (Lecture 13):</u> Life in the Solar System *Se-Joon Chung Nicholas Langhammer*

<u>Next Class (Thursday!):</u> Origin of Life *Anna Dorn Praneet Sahgal*

HW 5 due Tuesday Midterm due next Thursday.

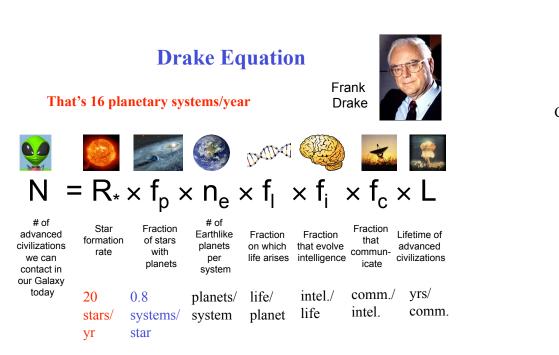
Music: Life on Mars-David Bowie

HW 2

Mary Heaton
 <u>http://alien-ufo-research.com/news/</u>

- Will email it to everyone after class today.
 - 50%: 4 short (few paragraphs) essays
 - 50%: 1 larger (~1-2 page) essay (with definition terms)
- Must be typed, not handwritten.
- Will cover material up to and including Thursday.
- It is a closed notes exam (honor system!).
- You can make 1 page of notes for use during the exam.
- Due at the start of class next Thursday (March 8th)

2012 Transit of Venus


- <u>http://www.transitofvenus.org/faq/113-when-is-</u> the-next-transit-of-venus-after-2012
- <u>http://www.transitofvenus.org/</u>

Presentations

- Se-Joon Chung Space Travel
- Nicholas Langhammer <u>Rethinking Life</u>

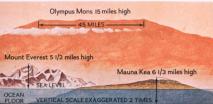
Outline

- Life on Mars
- Life on the outer planets

Complex term, so let's break it into two terms:

- n_p: number of planets suitable for life per planetary system
- f_{s} : fraction of stars whose properties are suitable for life to develop on one of its planets

$$n_e = n_p \times f_s$$



http://nike.cecs.csulb.edu/~kjlivio/Wallpapers/Planets%2001.jpg

Olympus Mons

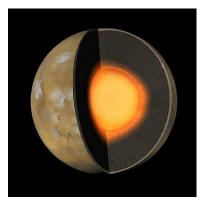
- The largest mountain in the Solar System rising 26 km high
- A shield volcano, like Hawaii on Earth
- Its caldera is 90 km across

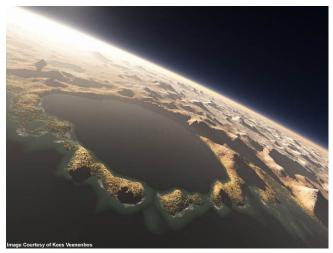
Olympus Mons

- Its base is more than 500 km in diameter
- As long as the entire Hawaiian island chain
- Rimmed by a 6 km high cliff
- Last erupted 25 million years ago
- Probably so big, due to lack of plate tectonics

Valles Marineris

- A series of fault canyons
- 5000 km long
 - A big as the U.S.!
- A giant crack in the crust of Mars
 - Formed as the planet cooled
 - Expanded by water flow





Mars' Interior

- Like Earth, Mars has an iron core
 - About half of the planet's radius in size
 - Heavily contaminated with sulfur
 - Weak magnetic field suggests a thin layer of liquid iron, mostly solid

Mars' Watery Past

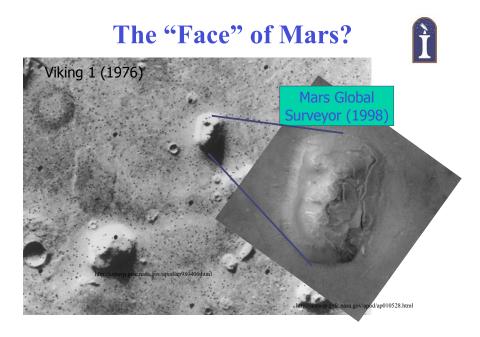
Mars' Past



- Early in Mars' history it was likely more Earth-like
 - Geologically active
 - Volcanic eruptions created a thick carbon dioxide, nitrogen atmosphere
 - Greenhouse effect made it warm enough for liquid water
 - Oceans? Rivers? Glaciers by the poles?
 - Life?

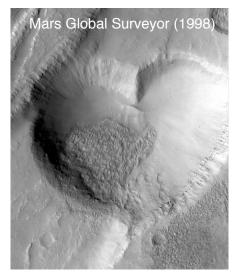
What Happened to the Water?

- That is the big question
 - Quite a lot of evidence for water now and in the past.
 - Did the surface water escape to space with the air?
 - How much is still frozen beneath the surface?



What Happened?

- Mars was too small
 Not enough internal heat
- Plate tectonics stopped
 - Volcanoes sat over "hotspots" grew to immense sizes
- Volcanic activity slowed as the interior cooled
- The atmosphere escaped
- The planet froze
- Did life evolve and then move underground?



Other Faces

http://antwrp.gsfc.nasa.gov/apod/ap990315.html

Other Places

Í

The Search for Mars Life

- Viking 1 and 2 carried several experiments to detect life
- The results were ambiguous. The soil reacted vigorously with the Viking nutrients, then tapered off in activity.
- The conclusion of most scientists is that the reactions were due to inorganic chemical reactions.
- It has been suggested that Mars might harbor peroxide-based life forms that the landers could not detect

es

http://www.solarviews.com/cap/mgs/heart.htm

Martians?

In August 1996, evidence for fossil microbial life was found in a Martian meteorite.

- ALH84001 (3Gyrs): Found in Antarctica, composition suggests it was knocked from Mars
- About 14 such Mars rocks have been found on Earth

Martian Microbe Fossils?

- Microscopic shapes that resemble living and fossil bacteria on Earth– nanobacteria, but much smaller than on Earth.
- Microscopic mineral grains like some produced by living and fossil bacteria on Earth
- Organic chemical compounds that resemble the decay products of bacteria on Earth.
- In the end, not compelling enough. Non-biological processes can probably produce the observed features

Phobos & Deimos

- Mars' moons
- Likely captured asteroids
- Very small
 - About 15-25 km in size
 - Shaped like potatoes

Manned Mars Exploration

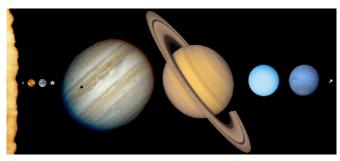
- NASA's plans to send a manned expedition to Mars
- Obama estimated a manned orbit to Mars in mid 2030's with a landing soon after.
- Russia and Europe are discussing options
- China may be considering it too.

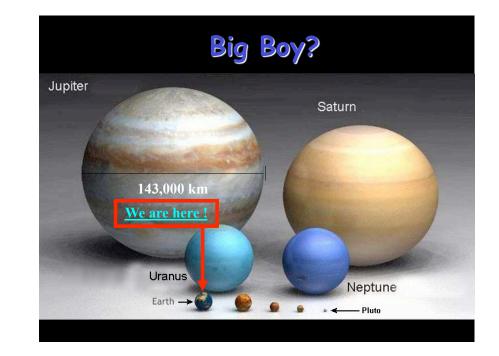
Question

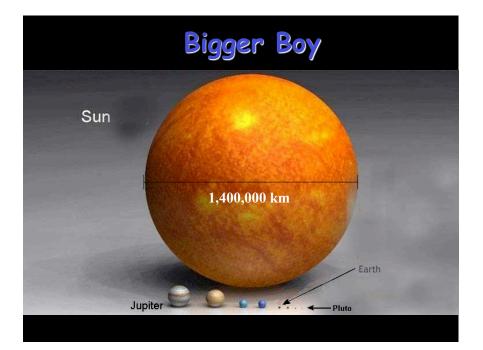
We know for sure that

- a) Mars used to have water.
- b) Mars has life.
- c) The people of Mars need soap.
- d) The atmosphere of Mars is gone.
- e) Mars has water just under the surface now and used to have surface water.

Question




The face on Mars


- a) was a huge NASA cover-up.
- b) might have been created by Martians or ETs, but we'll never know for sure.
- c) was an optical illusions, like cloud shapes.
- d) will be the major focus of any follow-up rover missions.
- e) was really a statue that had fallen over.

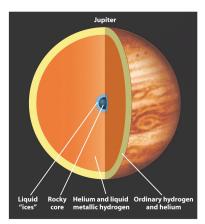
Life in the Solar System

- Venus may have life in the clouds.
- Mars might still have life under the soil.
- But what about the outer solar system?
- It isn't in our definition of the habitable zone, but it still is interesting.
- We will now focus on Jupiter, Io, Europa, and Titan.

Earth – Jupiter comparison

Biggest and most massive planet, has the largest gravity, has the largest number of moons (>63), yet has the shortest day in Solar System. Radiates more energy than it absorbs.

and the second	
State of the local division of the local div	
Radius	11.2 Earth
Cloud-top gravity	2.5 Earth
Mass	318 Earth
(more than 2.5 times the rest combined)	
Distance from Sun	5.2 AU
Year	11.88 Earth years
Solar day	9 hours 55 minutes
Causes a bulge at the equator.	

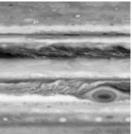

Jupiter, King of the Planets

Ì

- Named for the king of the Roman gods
- A truly immense planet
 - Over 11 times the diameter of Earth
 - Over 300 times the mass of Earth
 - Over twice the mass of all the other planets combined!
 - Has over 63 moons, its own mini-solar system!
- Visited by 4 spacecraft
 - Pioneer 11 Flyby in 1979
 - Voyagers 1 & 2 Flybys in 1980 & 1981
 - Galileo Went into orbit and dropped a probe into Jupiter's atmosphere, 1990-2003

Jupiter's Interior

- Average density only 30% greater than water
- 25% that of the Earth's average density
- By 20,000 km, the pressure is 3 million times that on the Earth's surface!
 - Hydrogen becomes a liquid metal
- Core of rock & "ice" 10-12 Earth masses



Jupiter's Atmosphere

- Although mostly gas, by 20,000 km in, the pressure is 3 million atmospheres!
- Due to an internal heat source, the temperature rises as one penetrates the atmosphere.
- The outer atmosphere is made of freezing clouds of ammonia, methane, and ice.
- The swirling patterns are evidence of great storms.

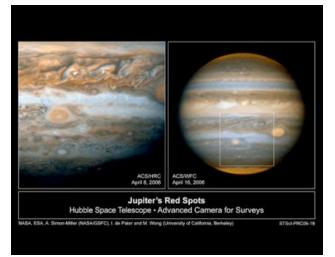


Driving Jupiter's Weather

- On Earth, solar heating drives weather
- On Jupiter, internal heat drives weather
 - Winds maintain speeds to great depths
 - Jupiter radiates 70% more heat than it receives from the Sun
 - The heat is from Jupiter contracting under its own powerful gravity
 - As it contracts, the gas is squeezed, and the temperature increases

The Great Red Spot

- A huge storm 25,000 km across twice size of the Earth!
- First observed > 300 years ago!



Voyager 1 image

Cassini images

Little Red Spot

Life?

- Carl Sagan and Edwin Salpeter devised a scheme for life in the clouds of Jupiter.
- They argued that the atmosphere must be rich in organic chemistry, so why not expect Earth-like life?

http://tierra.rediris.es/merge/Carl_Sagan/192a.jpg http://www.aip.org/history/esva/catalog/images/salpeter_edwin_a3.jpg

Floating Life

- The problem is that any life in the clouds that sank too far down would be destroyed by the temperature or pressure.
- They proposed a simple life form like oceanic plankton called "sinkers".
- Small (0.1 cm) life that grew and fell, but then replicated by "splitting-up" and getting circulated back into the upper atmosphere.

http://www.wackerbaits.com/sf/media/bellsinker.jpg http://www.mantapacific.org/mantapacific/information/images/plankton.jpg

Floating Life

- The sinkers became the basis of a proposed ecology.
- They also posited "floaters"– large hydrogen balloon-like life that "swim" in the Jovian atmosphere.

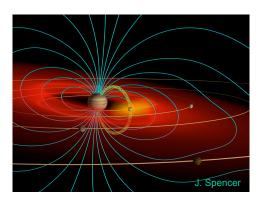
http://www.firaxis.com/smac/nativelife.cfm

Floating Life

- They could be huge creatures, as large as 1 to 2 km in diameter.
- Maybe similar to whales- mixture between jellyfish and birds?
- Big bags of hydrogen gas.

http://img.photobucket.com/albums/v154/superminyme/National %20Geographic%20Picture%20Atlas%20of%20Our %20Universe/Pg4JupiterPic.jpg

Floating Life

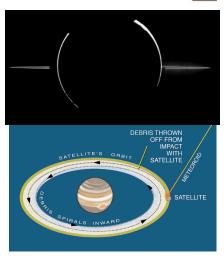

- Maybe there are also "hunters" that fed on the floaters?
- Of course, this is all speculative, and there is no way to detect such life.
- Science fiction from scientists really.

http://www.epilogue.net/cgi/database/art/list.pl?gallery=3126

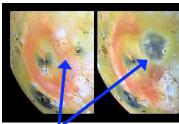
Jupiter's Magnetosphere

- Liquid metal hydrogen generates a magnetic field
 - 14x stronger than Earth's field
 - Over 4 million km across
- A ring of ionized particles surrounds Jupiter
 - Stripped from Jupiter's moon Io

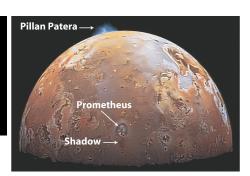
The Galilean Moons


Ì

- Io is active.
- Europa is now thought to be the best option for life.
- But, Ganymede and Callisto are contenders perhaps for ancient life.

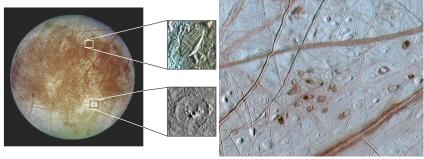

Jupiter's Rings

- Jupiter has rings!
- Discovered by the Voyagers
- Not prominent like Saturn's
- Dusty disk of debris, probably from meteoroid impacts with small moons



Io

- Innermost Galilean moon the "pizza moon"
- The most volcanically active body in the solar system.
- Voyager 1 discovered presence of volcanoes
- Internal heating by Jupiter's tides
- Atmospheric gases ripped off by Jupiter's magnetic field ion torus

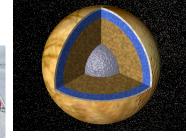


Pillan Patera eruption Before & after

Europa

- Slightly smaller than our Moon.
- Icy crust 5 km thick. Can protect life against magnetic fields.
- Evidence for deep (50 km!) liquid water ocean beneath crustremains liquid from tidal forces from Jupiter
- Cracks and fissures on surface upwelling?

Galileo



- Young surface few craters
- Tidal forces pull and push the ice
 - Like Io, it probably has strong tidal forces.

Europa

- Life would have to be below the surface, around hydrothermal vents.
- Very encouraging, as early life on Earth, might have been formed around such vents.
- We don't how thick the ice is yet.
- Future missions, will have to employ melting or smash and dive spacecraft.

Ganymede

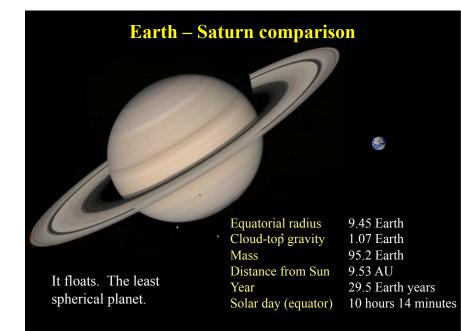
- Largest of the Galilean Moons
- Partly ancient surface, partly younger surface
 - Younger surfaces about the age of the Moon's maria
- Compared to our Moon:
 - 50% larger
 - 100% more massive
 - -40% less dense
- Interior more differentiated than Callisto, probably has an iron core
- May have a water ocean under surface.

Callisto

- Furthest of the Galilean Moons from Jupiter
- Ancient surface, covered with craters
- Compared to our Moon:
 - 40% larger
 - 50% more massive
 - 45% less dense
- Surface is made of "dirty ice"
- Interior is rocky, mixed with ice

Europa Jupiter System Mission

- Early planning stages of NASA/ESA/JAXA mission.
- Two or three orbiters
 - Launch date around 2020



Question

The best place to look for life in the Jupiter system is

- a) in the frozen oceans of Callisto.
- b) in the frozen oceans of Ganymede.
- c) in the upper atmospheres of Jupiter, floating life.
- d) deep in the atmosphere of Jupiter, diamond bodied life to withstand the pressures.
- e) under the ice on Europa.

Jupiter-Saturn Comparison

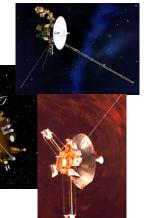
Equatorial radius Mass Density

0.84 Jupiter 0.30 Jupiter 0.52 Jupiter

Almost as big as Jupiter, but Much less massive!

Saturn

- Named for the father of the Roman gods
- Saturn is very similar to Jupiter
 - Large planet
 - Mostly liquid hydrogen
 - Has a mini-solar system
 - At least 60 moons
 - Most are small



http://www.solarviews.com/cap/ sat/saturn.htm

http://saturn.jpl.nasa.gov/cgibin/ gs2.cgi?path=../multimedia/ images/saturn/images/ PIA05380.jpg&type=image

Missions to Saturn

- There have been 4 unmanned spacecraft missions to Saturn
- Pioneer 11 – Flyby 1979
- Voyager 1 – Flyby 1980
- Voyager 2
 - Flyby 1981
- Cassini-Huygens – Arrived 2004

The Cassini Mission

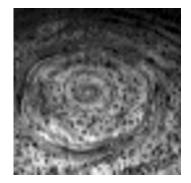
- Launched on October 15th, 1997
- Arrived at Saturn on July 1st, 2004
- Orbiting Saturn, making flybys of the planet, its rings, and some of its moons
- Contains 12 scientific instruments
- Also carries the Huygens probe, which was dropped onto Titan, Saturn's largest moon on Jan 2005. Remember?

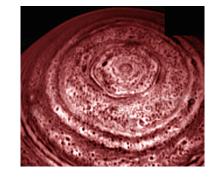
Saturn's Atmosphere

Ì

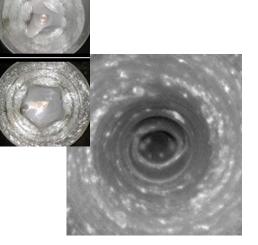
- Composition similar to Jupiter
 - Mostly hydrogen and helium
- Atmosphere more "spread out"
 - Less gravity
 - Contrast of cloud bands reduced
- Wind speeds fastest at the equator
 - 1000 km per hour!

Driving Saturn's Weather




- As on Jupiter, Saturn's internal heat drives weather
 - Saturn radiates 80% more heat than it receives from the Sun
 - Like Jupiter, Saturn is still contracting!
 - As is contracts, heat is produced

Driving Saturn's Weather


- As on Jupiter, storms are produced between cloud bands
 - No long lasting storm like the Great Red Spot, but hexagon cloud at pole has been stable for 20+ years.

Driving Saturn's Weather

- Spinning water bucket experiments show similar features.
- Pseudoscience posit sound wave reflections.
- Saturn's South Pole also has an unusual structure.

Ì

Saturn's Interior

Liquid Rocky Helium and liquid Ordinary hydrogen "ices" core metallic hydrogen and helium

Makeup of the Rings

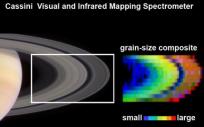
• The rings of Saturn are **not** solid rings

• Similar structure to

The interior is less compressed

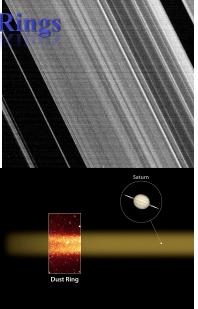
• Liquid metallic hydrogen

creates a magnetic field


- 30% weaker than Earth's

- But Saturn is less massive

Jupiter's


- Made of icy rocks
- 1cm to 10m across
- New Cassini data shows ring particle size varies with distance from Saturn
 - Note the gap is filled with small particles

Saturn's

- Two main rings
 - Several fainter rings
 - Each ring is divided into *ringlets*
- The rings are **thin**
 - Only a few tens of meters thick-razor thin!

