### Astronomy 330



#### This class (Lecture 13):

Life in the Solar System Maura Walsh Carolyn Buesing

### Next Class:

Origin of Life Alesia Prakapenka Anthony Salis

### Midterm due next Thursday.

Music: Life on Mars- David Bowie

### **HW 2**

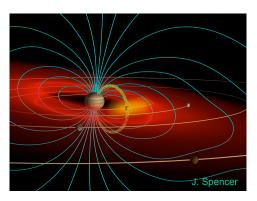
- Michelle Boehm http://www.latest-ufo-sightings.net/
- Sonja Bromann http://www.proofofalienlife.com

### **Take Home Midterm**



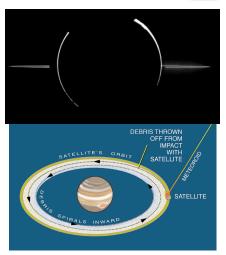
- Will email it to everyone after class today.
  - 50%: 4 short (few paragraphs) essays
  - 50%: 1 large (~1-2 page) essay (with definition terms)
- Must be typed, not handwritten.
- Will cover material up to and including today.
- It is a closed notes exam (honor system!).
- You can make 1 page of notes that you use during the exam.

### **Presentations**


- Maura Walsh Space Food
- Carolyn Buesing
   <u>Space Care</u>

### Outline

- What about life on Europa (Moon of Jupiter)?
- What about life on Titan (Moon of Saturn)?
- Need to consider the Star too..
  - Too big?
  - Too small?
  - Too binary?
  - Too hairy?


## Jupiter's Magnetosphere

- Liquid metal hydrogen generates a magnetic field
  - 14x stronger than Earth's field
  - Over 4 million km across
- A ring of ionized particles surrounds Jupiter
  - Stripped from Jupiter's moon Io

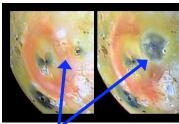


## **Jupiter's Rings**

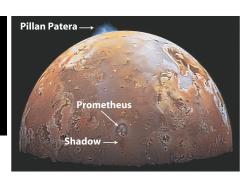
- Jupiter has rings!
- Discovered by the Voyagers
- Not prominent like Saturn's
- Dusty disk of debris, probably from meteoroid impacts with small moons



### The Galilean Moons

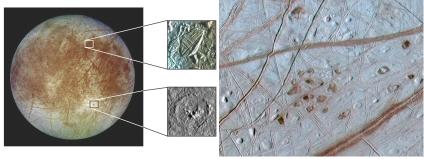

- Io is active.
- Europa is now thought to be the best option for life.
- But, Ganymede and Callisto are contenders perhaps for ancient life.




# Ì

### Io

- Innermost Galilean moon the "pizza moon"
- The most volcanically active body in the solar system.
- Voyager 1 discovered presence of volcanoes
- Internal heating by Jupiter's tides
- Atmospheric gases ripped off by Jupiter's magnetic field ion torus




Pillan Patera eruption Before & after



### Europa

- Slightly smaller than our Moon.
- Icy crust 5 km thick. Can protect life against magnetic fields.
- Evidence for deep (50 km!) liquid water ocean beneath crustremains liquid from tidal forces from Jupiter
- Cracks and fissures on surface upwelling?



Galileo



- Young surface few craters
- Tidal forces pull and push the ice
  - Like Io, it probably has strong tidal forces.

### Europa



- Life would have to be below the surface, around hydrothermal vents.
- Very encouraging, as early life on Earth, might have been formed around such vents.
- We don't how thick the ice is yet.
- Future missions, will have to employ melting or smash and dive spacecraft.





### Ganymede

- Largest of the Galilean Moons
- Partly ancient surface, partly younger surface
  - Younger surfaces about the age of the Moon's maria
- Compared to our Moon:
  - 50% larger
  - 100% more massive
  - -40% less dense
- Interior more differentiated than Callisto, probably has an iron core
- May have a water ocean under surface.



### Callisto

- Furthest of the Galilean Moons from Jupiter
- Ancient surface, covered with craters
- Compared to our Moon:
  - 40% larger
  - 50% more massive
  - 45% less dense
- Surface is made of "dirty ice"
- Interior is rocky, mixed with ice

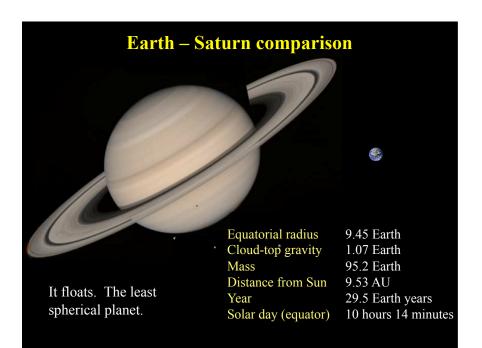


## **Finding JIMO**

- Jupiter Icy Moon Orbiter
  - To launch in 2017 or later
- Study Callisto, Ganymede, and Europa
  - Investigate makeup
  - Histories
  - Potential for sustaining life



## Europa Jupiter System Mission


- Early planning stages of NASA/ESA/JAXA mission.
- Two or three orbiters
  - Launch date around 2020



### Question

The best place to look for life in the Jupiter system is

- a) in the frozen oceans of Callisto.
- b) in the frozen oceans of Ganymede.
- c) in the upper atmospheres of Jupiter, floating life.
- d) deep in the atmosphere of Jupiter, diamond bodied life to withstand the pressures.
- e) under the ice on Europa.



### **Jupiter-Saturn Comparison**



Equatorial radius0.84 JupiterMass0.30 JupiterDensity0.52 Jupiter

Almost as big as Jupiter, but Much less massive!

### Saturn

- Named for the father of the Roman gods
- Saturn is very similar to Jupiter - Large planet
  - Mostly liquid hydrogen
  - Has a mini-solar system
    - At least 60 moons
    - Most are small






http://www.solarviews.com/cap/ sat/saturn.htm http://saturn.jpl.nasa.gov/cgibin/ gs2.cgi?path=../multimedia/ images/saturn/images/ PLA05380.jpg&type=image

### **Missions to Saturn**

- There have been 4 unmanned spacecraft missions to Saturn
- Pioneer 11

   Flyby 1979
- Voyager 1 – Flyby 1980
- Voyager 2
- Flyby 1981
- Cassini-Huygens – Arrived 2004



### The Cassini Mission



- Launched on October 15th, 1997
- Arrived at Saturn on July 1st, 2004
- Orbiting Saturn, making flybys of the planet, its rings, and some of its moons
- Contains 12 scientific instruments
- Also carries the Huygens probe, which was dropped onto Titan, Saturn's largest moon on Jan 2005. Remember?

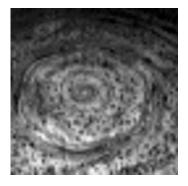
### Saturn's Atmosphere

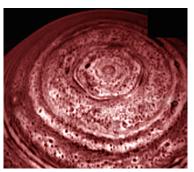
- Composition similar to Jupiter
  - Mostly hydrogen and helium
- Atmosphere more "spread out"
  - Less gravity
  - Contrast of cloud bands reduced
- Wind speeds fastest at the equator
  - 1000 km per hour!



### **Driving Saturn's Weather**

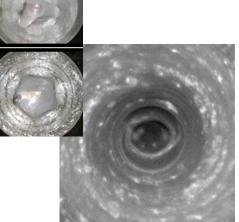
# Ì


- As on Jupiter, Saturn's internal heat drives weather
  - Saturn radiates 80% more heat than it receives from the Sun
  - Like Jupiter, Saturn is still contracting!
  - As is contracts, heat is produced



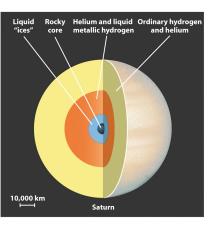

### **Driving Saturn's Weather**

Ì


- As on Jupiter, storms are produced between cloud bands
  - No long lasting storm like the Great Red Spot, but hexagon cloud at pole has been stable for 20+ years.

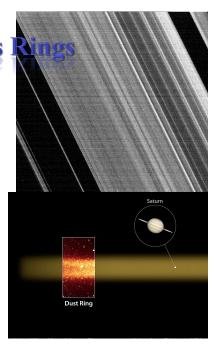





### **Driving Saturn's Weather**

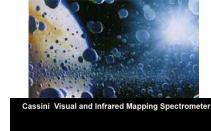
- Spinning water bucket experiments show similar features.
- Pseudoscience posit sound wave reflections.
- Saturn's South Pole also has an unusual structure.

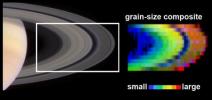



### **Saturn's Interior**

- Similar structure to Jupiter's
  - But Saturn is less massive
  - The interior is less compressed
- Liquid metallic hydrogen creates a magnetic field
  - 30% weaker than Earth's




## Saturn's


- Two main rings
  - Several fainter rings
  - Each ring is divided into *ringlets*
- The rings are **thin** 
  - Only a few tens of meters thick- razor thin!



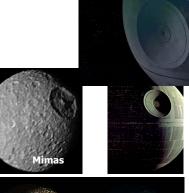
## Makeup of the Rings

- The rings of Saturn are **not** solid rings
  - Made of icy rocks
  - 1cm to 10m across
- New Cassini data shows ring particle size varies with distance from Saturn
  - Note the gap is filled with small particles





### Saturn's Moons


- Saturn has a large number of moons - At least 60
- Only Titan is comparable to Jupiter's Galilean moons
- Smaller moons are mostly ice, some rock

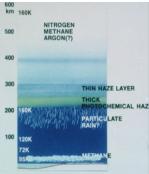


### Saturn's Odd Moons

- **Mimas** Crater two-thirds its own radius
- Enceladus Fresh ice surface, water volcanoes?
- Hyperion Irregularly shaped
- **Iapetus** Half its surface is 10x darker than the other half
- Phoebe Orbits Saturn backwards








### **Titan**

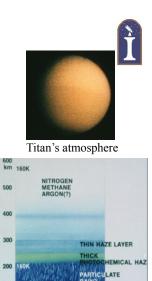
- Saturn's largest moon-bigger than Mercury.
- 2nd largest moon in the solar system after Ganymede.
- Discovered in 1655 by Christiaan Huygens
- Only moon to have a dense atmosphere
  - Dense nitrogen atmosphere
  - Small greenhouse effect
  - 98% nitrogen
    - -Only Earth is comparable
    - -Methane (something producing it)
  - Much like ancient Earth!



Titan's atmosphere



### **Titan**


• Atmospheric pressure is 1.5 times Earth's

• May be a "deep freeze" of the chemical

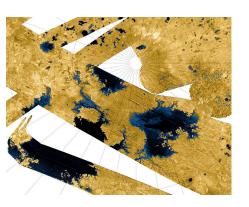
• Probably not – too cold: 95 K

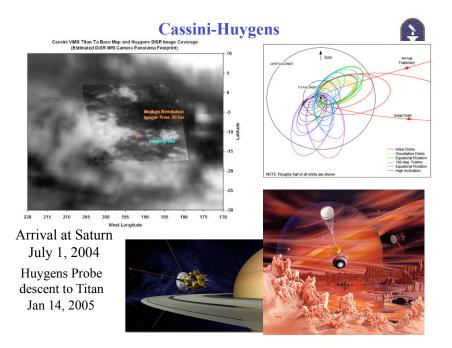
composition of ancient Earth

• Organic compounds – life?



**Piercing the Smog** 


## Ì


- Cassini has special infrared cameras to see through Titan's smog
- Green areas are water ice
- Yellow-orange areas are hydrocarbon ice
- White area is a methane cloud over the south pole



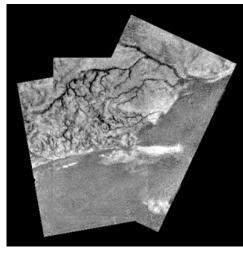
### Surface Liquid

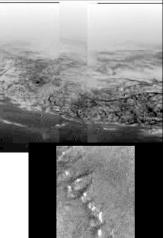
- Now confirmed to have liquid on surface.
- Only body besides the Earth.
- Too cold for water, so most likely filled with liquid ethane, methane, and dissolved nitrogen



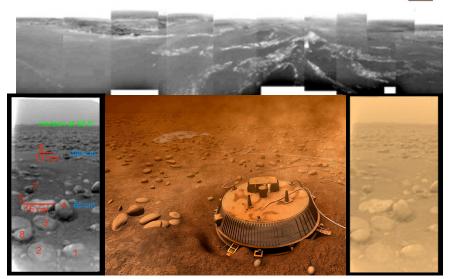


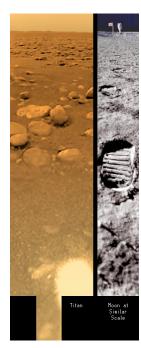
### A Possible Landing





- The probe floating in the methane/ethane sea of Titan.
- Mountains in the distance.

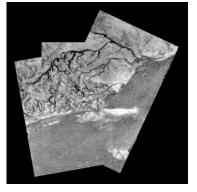
http://saturn.jpl.nasa.gov/cgibin/gs2.cgi?path=../multimedia/images/artwork/images/


Ì


### Mapping Titan



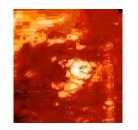



### **Mapping Titan**





## **Mapping Titan**






http://esamultimedia.esa.int/multimedia/esc/esaspacecast001.mp4

### Cryovolcanoes

- Methane may come from volcanoes.
- Volcanoes heat up rock hard ice, spewing "lava" made up of water and ammonia.



- Two hot spots found in atmosphere, suggesting eruptions.
- Mountains found, suggesting some sort of plate tectonics.

### Life on Titan



- Conditions much like the early Earth.
- Can organic chemistry work well in this environment?
- If found, would revolutionize our understanding of life.
- Some researchers suggest that panspermia from Earth is likely, so might find our cousins.
- Future missions will need to have biological component.

### Conclusion

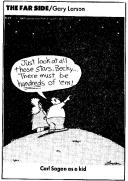


- But, possibilities exist for life
  - Venus's clouds may have migrated life.
  - Mars may have some microbial history linked to water, and perhaps some subsurface life.
  - Jupiter's reducing atmosphere may harbor sinkers.
  - Europa's sub-crustal oceans may harbor life, even fish-like life.
  - Titan is still very interesting
    - Thick atmosphere
    - Reducing chemistry

### Question

Why is Titan an interesting place to look for life?

- a) It will revolutionize how we think about ET life.
- b) It will create new life hybrids.
- c) There is no chance of life there.
- d) The life is in early state if at all.
- e) Black beans.




### **Optimism?**

- Carl Sagan argues for  $n_p > 3$ .
  - If Venus had less clouds (less greenhouse) it could have been cool enough for life.
  - If Mars had a thicker atmosphere it could have been warm enough for life.
  - If solvents other than water were used, maybe the moons of the outer planets?
  - Giant Jupiter-like planets close in?
  - Non-Earth life?

http://www.uranos.eu.org/biogr/sagane.html http://spider.ipac.caltech.edu/staff/jarrett/sagan/sagan.html







### **Pessimism?**

- We only considered temperature. What about:
- Gravity?
- Atmospheric pressure?
- Size of the moon or planet?
- Does life need a Moon-like moon? Does life need the tides? Does the Moon protect the Earth's rotation? Is a Jupiter needed?
- If we impose Earth chauvinism, we can easily reduce to  $n_p \sim 0.1$



http://sagiru.tripod.com/Travel/Lost\_in\_the\_Sahara/lost\_in\_the\_sahara

### **n**<sub>p</sub>: number of life planets per planetary system (average)

- Can range from 0.01 to >3.
  - Is seismic activity necessary to recycle bioelements?
  - How important is the first atmosphere? Ozone?
  - Is a moon needed? A large Jupiter-like planet?
  - Is liquid water a requirement? Other solvents okay?
    - Not too hot, not too cold; not too much pressure, not too little– Goldilocks requirement?
  - Habitable Zone around the star.
  - Galactic Habitable Zone
  - Does atmosphere need feedback mechanism?
  - But in our solar system, maybe 5 nearly possible life planets.