Top Ten Reasons Why Your Ready for a Spring Break from Astro 330

- 10) It is officially Spring-vernal equinox is Saturday.
- 9) You're starting to enjoy seeing Frank Drake's face on my slides.
- 8) I'm starting to make sense.
- 7) You talked to you friends about how closely proteins and nucleic acids are linked.
- 6) You sold your GPS and now navigate by the stars.
- 5) You celebrated Illinois Pluto Day on March 13th.
- 4) You can't form a sentence without using the term "freaky big".
- 3) You have subconsciously adopted a hairstyle matching Einstein's.
- 2) You wake up in a cold sweat at night worrying about Supernovae.
- 1) You need to recover from the pneumonia you contracted while waiting for UFOs every night.

Astronomy 330

This class (Lecture 17): Biological Evolution

<u>Next Class:</u> Origin of Intelligence

HW 7 due March 31st

Music: Space Robot Five- Brave Saint Saturn

HW 2

- Daniel Miller-McLemore: <u>http://www.ufos-aliens.co.uk/</u> cosmicmarsanoms.htm
- Joe Pulka

http://www.alienufoart.com/AlienArt1.htm

Presentations

- Marybeth Kram: Truth and Fabrication in The X-Files
- Joe Pulka: Aristarchus of Samos and Ancient Cosmology

Ì

Outline

- Two types of cell life: Eukaryotes and Prokaryotes.
- All life can be divided into 3 types:
 - Bacteria
 - Archaea
 - Eukarya
- Genetic diversity of life...

Drake Equation

That's 5.8 life systems/decade

Frank

Drake

$N = R_* \times f_p \times n_e \times f_1 \times f_i \times f_c \times L$

# of advanced civilizations we can contact in	Star formation rate	Fraction of stars with planets	# of Earthlike planets per system	Fraction on which life arises	Fraction that evolve intelligence	Fraction that commun- icate	Lifetime of advanced civilizations
our Galaxy today	10 stars/ yr	0.75 systems/ star	1.5 x 0.11 = 0.165 planets/ system	0.47 life/ planet	intel./ life	comm./ intel.	yrs/ comm.

Prokaryotes

Divided into 2 domains:

- 1. Eubacteria or "true" bacteria
- Archaea 2.
 - 20% of the world's biomass.
 - _ Thought to be the oldest surviving organisms.
 - Often found in harsh environments: _ hot springs, undersea vents, salty seashores, etc, which were probably more common on the early Earth.
 - Some evidence that ancient _ organisms were heat-lovers (maybe)

Carl Woese here at UIUC, discovered Archaea scheme.

Eukaryotes

• All animals, plants, and fungi.

3 Domains of Life

- Genetically speaking, Archaea and Eukarya are more similar to one another than are Bacteria and Archaea
- Implies that Archaea and Bacteria split and then all Eukarya split from Archaea
- A major implication for the evolution of life on Earth

Question

earliest organisms

What type of life is more closely related to us?

- a) Archaea
- b) Eubacteria
- c) True Bacteria

Genetic Relations

- This is a major change from the old methods of assigning groups based on outward form and anatomy.
- Instead based on studies of the genetic code.
- Surprise: Human and chimpanzees share about 99% of the same DNA, and about 97% with mice
- Surprise: 2 species of fruit fly look very much alike, but only share about 25%. Some of this differences is due to "junk" DNA.

http://www.pritchettcartoons.com/fruitfly.htm

Changes in Bio-Systems

- Today's view: evolution is the most important and unifying property of life.
- Anaximander (c. 610-547 BC): life arose in water and gradually became more complex
- Empedocles (c. 492-432 BC): survival of the fittest (but, "a good idea stated within an insufficient theoretical frame loses its explanatory power and is forgotten" by Hans Reichenbach)
- Aristotle (384-322 BC): species are fixed and independent of each other \rightarrow evolution discarded for 2000 years
- Fossil record: slowly broke down the Aristotelian theory

For the Species Survival

2 Elimination of individuals with certain traits

3 Reproduction of survivor

Increasing frequency of traits that enhance survival and reproductive success

Copyright @ 2001 by Benjamin Cummings, an imprint of Addison Wesley.

- Darwin (1809-1882) & Malthus (1766-1834):
 - Populations can grow faster than food sources can support them.
 - Creates a struggle for survival that can wipe out competitors.
 - Individual variations has advantages or disadvantages in the struggle for survival
 - Natural selection can create unequal reproductive success

Filling the Niche with Finch

- Other Evidence:

 Adapted species in the Galápagos Islands, in particular finches
 Artificial breeding of house/farm animals and vegetables
- DNA is really the mechanism of natural selection, but evolution requires both heredity and environment

Mutant Sex

- Mutations from changes in the bases of DNA.
- Usually copying errors, but also radiation– radioactivity, cosmic rays, chemical agents, or UV light.
- About 3 mutations per person per generation.
- Most mutations are neutral, changes in the *junk* DNA.

http://www.mutantx.net/features/press_vw_sexv.html

• Why is sex important to this class?

Mutant Sex

 Sexual reproduction leads to greater genetic diversity
 – a difference between prokaryotes and eukaryotes?

http://www.alcasoft.com/arkansas/blackberry.html

- Asexual reproduction does not allow 2 new and beneficial mutations to combine.
- Blackberries have not changed much in 10 millions years, but sexual plants have produced: raspberries, thimbleberries, cloudberries, dewberries, etc.
- Sex is useful in the process, but the mutations are still key.

Does it take a long time?

Cabbage, kale, kohlrabi, brussels sprouts, cauliflower and broccoli have same common ancestor– wild mustard. All bred by humans on a very short time scale.

This is selective breeding, but still the potential is in the DNA.

Or domestic lap dogs from wolves in about 5000 years.

Comparing Ages

- Ì
- Important to understand history of Earth life is the ability to age different components
- Can be difficult
- Radioactive dating....
 - ¹⁴C for the last 60,000 years
 - $\,^{40}\!K$ and $^{235}\!U\,$ for 100's of millions of years

Question

Sex in space, or on Earth, is important because

- a) sex, although fun, also stimulates gene mutations.
- b) it allows the genetic material of the better organisms to survive.
- c) mutations can only occur in sexual reproduction.
- d) it leads to greater genetic diversity and an increase of positive mutations in the offspring.

Radioactive Dating

The Law of Radioactive Decay

As radioactive "parent" decays, the number of decay product or "daughters" increases

Decay is a good "clock"

- Each radioactive species has different "tick"
- Rate= "half-life"
- Exponential decay from original population of n₀

Start out with N parents, 0 daughters				
Time t since start	# parents	# daughters		
0	Ν	0		
t _{1/2}	¹ / ₂ N = half as much	¹ / ₂ N have appeared		
2t _{1/2}	¹ / ₄ N = half again as much	³ ⁄4 N		
3t _{1/2}	1/8 N	7/8 N		
30t _{1/2}	About N/109	99.9999999% N		

Decay Rule

Radioactive Decay Examples

http://www.colorado.edu/physics/2000/isotopes/radioactive_decay3.html

Carbon-14

- Cosmic rays from space are constantly hitting the Earth.
- React with ¹⁴N in atmosphere to create ¹⁴C.
- Decays back to ¹⁴N with half life of 5730 years.
- But, there is an equilibrium in abundance
- In atmosphere, the ¹⁴C is mostly in ¹⁴CO².

http://bbspot.com/Images/News_Features/2003/12/half-life.jpg

Carbon-14

- Plants take in ¹⁴CO² with the ¹²CO² and other animals eat the plants.
- So, every living creature has a equilibrium ratio of ¹⁴CO²/¹²CO².
- When the organism dies, the ¹⁴C decays to ¹⁴N. By measuring how much ¹⁴C remains, you can date the fossil.
- This works well to about 60,000 years.

http://web.mit.edu/smcguire/www/newfoundland/newf16.html

- Viking remains in Newfoundland– 500 yrs before Columbus.
- Shroud of Turin to 1330 AD

Dating Rocks

- First you ask them out?
- No, you need a radioactive decay that has a longer half-life than ¹⁴C.
- Potassium-argon
 - $\,^{40}\text{K}$ decays to ^{40}Ar with a 1200 Myr half-life.
- Uranium-lead
 - $\,^{235}\text{U}$ to ^{207}Pb with 700 Myr half-life.
- But these only work with volcanic layers.
- So, the ages of fossils are interpolated from ages of volcanic layers above and below them.

Era	Period	Myr Ago	Life Forms	Events
Cenozoic	Quaternary	2	H. Sapiens	Ice ages
	Tertiary	65	Primates	Extinction of Dinosaurs
Mesozoic	Cretaceous	136	Birds	S. Atlantic open to 1900 miles
	Jurassic	190		N. Atlantic open to 600 miles
	Triassic	225	Mammals	Continental drift
Paleozoic	Permian	280	Reptiles	Pangaea breaks up
	Carboniferous	345	Amphibians	Formation of coal
	Devonian	395	Insects	
	Silurian	430	Land Plants	
	Ordovician	500	Fish	
	Cambrian	543	Trilobites	
Precambrian		545	Small Shelly Fossils	
		580	Ediacarans	
		600-800	Multicellular life	Snowball Earth episodes

Increase of Complexity

- Last table showed only the last 800 Myrs.
- The more complex and intelligent organisms appeared towards the end.
- For many years it was thought that life originated in the Cambrian era, then Precambrian fossils were found.
- Then, it was realized that there were single-celled fossils that required microscopes.

Myr Ago	Era	Event
Now	Cenozoic	
	Mesozoic	
	Paleozoic	Macroscopic life/Snowball Earth
	Precambrian	
1000		Worm tracks
		Multicellular algae
		Eukaryotes certain
		Sexual reproduction
2000		Eukaryotes possible
	Protozoic	Oxygen-rich atmosphere
		Snowball Earth
		Formation of continents
3000	Archean	Life begins?
4000		Formation of Oceans
		Bombardment decreases
		Frequent impacts
	Hadean	Earth formed

Concepts

- As prokaryotes are simpler than eukaryotes, we expect them to exist first.
- Identifying fossil prokaryotes is difficult: they're tiny!
- But there is enough evidence that before 1500-2000 Myrs ago there are only prokaryotes fossils.
- Note: the oldest fossils (3800 Myrs ago) are under some dispute, but the 2800 Myr old fossils are universally accepted.
- All of the macroscopic life only arose in the last 600 Myrs– 1/6th of the history of life on Earth.

http://www.earth.ox.ac.uk/research/geobiology/geobiology.htm

Early Earth

- We've talked about the Early Earth's atmosphere– mostly N and CO₂, which dominated the atmosphere for the first 3 billion years!
- But life was polluting the planet even then.

Making Oxygen!

- The early prokaryotes played a crucial role for life on Earth by producing oxygen through photosynthesis.
- Cyanobacteria (also called bluegreen algae) changed the world!
- Lived in colonies that formed mats or films, growing into large structures called stromatolites.
- Still around, but much more common before 700 Myrs ago.

Making Oxygen!

- About 2 billion years ago atmosphere became oxygenated!
- Probably killed off many species.
- But, oxygen was new and important step in intelligence
- It allowed a new energy extraction method
 - Aerobic (using oxygen) metabolism
 - More complex life
 - Created ozone layer (dry land now an option for life on Earth!)

