Astronomy 330

This class (Lecture 23): Communication

<u>Next Class:</u> Communication

HW10 is due Wednesday. Will take longer than usual- not multiple choice.

Online ICES

- ICES forms are available online, so far 33/100 students have completed it.
- I appreciate you filling them out!
- Please make sure to leave written comments. I find these comments the most useful, and typically that's where I make the most changes to the course.

Music: Aliens Exist-Blink 182

Question

Are you going to fill out an ICES form before the deadline?

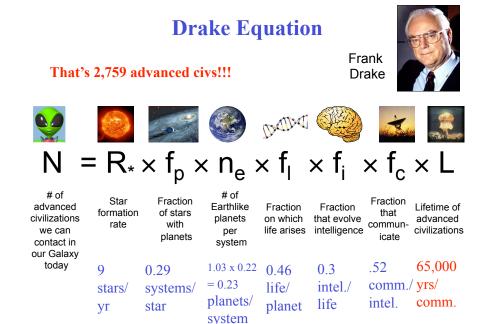
- a) Yes, I did it already.
- b) Yes, sometime today
- c) Yes, this weekend
- d) Yes, I promise to do it before the deadline of May6th!
- e) No, I don't want help you out (even after all you have done for me and my education) nor do I want to help out the large number of students who will come after me (I wish you a long life!). I prefer stagnation.

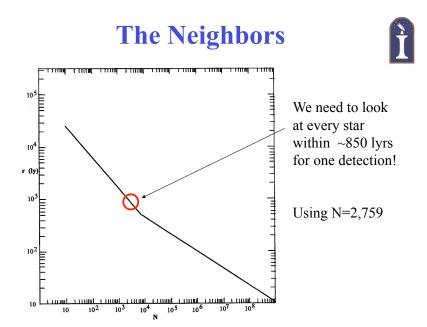
Final

- In this classroom, Fri, May 7th, 0800-1100.
- Will consist of
 - 15 question on Exam 1 material.
 - 15 question on Exam 2 material.
 - 30 questions from new material (Lect 20+).
 - +4 extra credit questions
- A total of 105 points, i.e. 5 points of extra credit.
- Final Exam grade is based on all three sections.
- If Section 1/2 grade is higher than Exam 1/2 grade, then it will replace your Exam 1/2 grade.

Final

- A normal-sized sheet of paper with notes on both sides is allowed.
- Exam 1 and 2 and last year's final are posted on class website (not Compass).
- I will post a review sheet


Final Paper


- Must turn in your draft and final paper by May 5th discussion class (at beginning of class).
- If you are happy with your draft grade, you don't have to turn in a final paper.

Outline

- Important factors for detection– the detection haystack.
- SETI experiments.

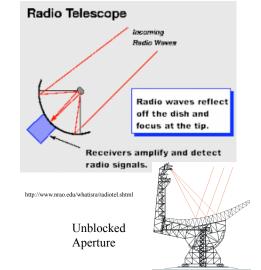
Ì

Problems...Problems

- Assume that an advanced civilization is broadcasting either in all directions or toward us.
- Where and when do we listen?
- Which frequency?
- Which channel?
- Which polarization?
- What is the code?

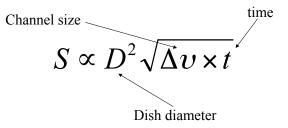
Problems...Problems

- The problem is worse than searching for a needle in a haystack.
- We have to assume that they are constantly broadcasting, or the problem is impossible.
- Have to make the needle bigger!



http://nl.ijs.si/et/talks/esslli02/ metadata_files/Haystack-FINALb.jpg

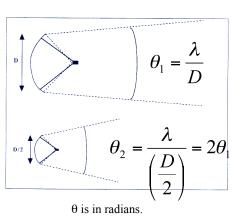
Sky Dishes


- Radio telescopes are similar to optical telescopes, just different wavelength.
- Most radio telescopes are Parabolic Cassegrains.
- Radio telescopes measure the source intensity.
- The bigger the dish, the more sensitive.
- So a big dish is best, right?

Haystack: Sensitivity

- Sensitivity of a radio telescope:
- We have to detect a weak signal in the presence of noise.
- So, ideally look in a fixed direction for a long time-better sensitivity to weak signals.
- But it may be the wrong direction.
- And a big dish is best, right?

Question


Ì

What makes a telescope more sensitive?

- a) Double the size
- b) Double the channel width
- c) Double the observing time
- d) Double the voltage
- e) Double the trouble

Haystack: Direction

- We can not *a priori* know which direction to look, so we must look in many directions.
- Tradeoff: The most sensitive radio telescope has the largest diameter but the smallest field of view.
- Beam size decreases as the diameter increases.
- The number of times you have to point to cover a certain area of the sky increases as diameter squared.

Dish Decision

- If ET signals are a few strong signals, we can use a small telescope and listen for a short time in any direction. The small diameter dish covers more area.
- If ET signal is many weak signals, we can use a bigger telescope and observe in a single direction for a long time. A weak signal requires a <u>big</u> dish.

http://www.noao.edu/staff/mighell/sacpeak/jpina/VLA%20in%20dish%204.jpg

Question

In any SETI experiment, it is best

- a) To use the biggest radio telescope available.
- b) To use a big radio telescope and sit on one star for a long time.
- c) To use a combination of small and large telescopes.
- d) To look for UFOs directly.

Haystack: Frequency

- Would the signal be concentrated in a small range of freqs?
- What size should a channel be?
- Could argue that the best choice is around 1 Hz.
- Then in the 1-10 GHz band there are 9 x 10⁹ channels!
- With modern electronics we can survey large numbers of channels, but not that many.
- What's the history of SETI?

Project Ozma

- The first look for ET radio signals by Frank Drake in 1960.
- Used a 26 meter telescope in W.V. using the H atom frequency band of 1.42 GHz.
- Targeted search of 2 nearby stars (11 lyrs) that are the same age as our Sun
- 200 hours over 3 months.
- A single 100 Hz channel scanned 400 kHz.
- 1 false alarm due to a secret military experiment.
- Nothing else detected

http://www.angelfire.com/pa maryanne/images/ozma.jpg

http://216.120.234.103/setiprime/setiprime/images/images-2003.html

Ozma II

- Ben Zuckerman and Pat Palmer used the 91m telescope in W.V. to survey the 670 nearest "suitable" stars.
- Targeted Search of stars with low mass and binaries that allowed stable planet orbits.
- Also observed at 1.42 GHz with 192 channels of 4 kHz and 192 channels of 52 kHz.
- Could have detected a 40 MW transmitter on a 100m telescope.
- Observed for 500 hours.
- No detection at a sensitivity 10 times better than Ozma

Ohio State Survey

- In 1973 by F. Dixon and D. Cole.
- Used Ohio State radio telescope for a continuous survey of sky.
- Not steerable- sort of like Arecibo, so cuts a swath through the sky: A Sky Survey
- Searched overhead for signals.

http://www.bigear.org

Ohio State

- 1.42 GHz with 50 channels of 10 kHz.
- Modest sensitivity— 100 times worse than Ozma II
- But not just looking at stars.
- Could only detect extremely strong transmissions.
- Land was sold to a golf course development.

http://www.bigear.org

Wow! in pop culture

The <u>Wow</u> Signal

- Aug. 15, 1977, Jerry Ehman was looking through the data when he recorded the Wow! signal.
- A major signal in the telescope– 30σ detection!
- Stayed around for >72 seconds.
- Unlikely to be noise, but never seen again.
- "Even if it were intelligent beings sending a signal, they'd do it far more than once."
- Used in X-Files

TIME (SECONDS)

The <u>Wow</u> Signal: Facts

- Narrowband signal: < 10 kHz wide (one channel only)
- Signal observed in only one (of two) horns
- Signal observed only once ("Big Ear" or other observatories)
- Within each 10-second observing interval, the average signal strength remained constant.
- For the entire observing interval of 6 data points lasting 72 seconds, the average signal strength remained constant (because the 6 data values follow the antenna pattern to better than a 99% accuracy).
- Modulation (signal strength variation) on a time scale less than 10 seconds could not be measured.
- http://www.bigear.org/Wow30th/wow30th.htm#otheranal

Gray & Marvel 2001, ApJ 546, 1171

- Paul Horowitz moved from a small number of channels to many many many channels.
- 1983 Sentinel: 128,000 channels covering 6 kHz each
- <u>1985 META:</u> 8 million channels with 400 kHz bandwidth.
- 1993: Horowitz and Sagan reported 8 unexplained signals that did not repeat.
- <u>1995 BETA:</u> Nearly a billion channels (2.5x10⁸) covering 2 GHz, 10 kHz channels. Windstorm blew the telescope over in late 1990s.
- Overall, Paul has found 37 signals that did not repeat, and did not have any other known source.

The NASA Search

The most ambitious search was planned by NASA on the 500th anniversary of the *Discovery* of America– Oct 12, 1992.

http://www.teslasociety.com/exposition2.jpg http://www.sailtexas.com/columbusships.html

36 48 60 72 TIME (SECONDS)

The NASA Plan

- 2 prong approach using both Targeted Search and Sky Survey
- Sky Survey:
 - NASA's 34 m tracking telescopes in CA and Australia.
 - 6 year plan covering 1-10 GHz with 16 million channels of 20 Hz each and 30 different settings.
 - Would only detect very strong signals.
- Targeted Search:
 - Cover 850 suitable stars within 75 lyrs.
 - 16 rallion channels with 1 Hz bandwidth
 - -3 GHz range and very good sensitivity!

The NASA Search

- "In 1993, Nevada Senator Richard Bryan successfully introduced an amendment that eliminated all funding for the NASA SETI program.
- The cost of the program was less than 0.1% of NASA's annual budget, amounting to about a nickel per taxpayer per year. The Senator cited budget pressures as his reason for ending NASA's involvement with SETI."

The NASA Search

• "The Great Martian Chase may finally come to an end. As of today millions have been spent and we have yet to bag a single little green fellow. Not a single Martian has said take me to your leader, and not a single flying saucer has applied for FAA approval."

http://www.planetary.org/html/UPDATES/seti/history/History12.htm http://www.seti.org/about_us/faq.html

The SETI Institute

- An independent institute that was working with NASA on their SETI project.
- Once NASA cut funding, they went ahead with a more modest version of the Targeted Search– Project Phoenix.
- Now funded by private donors.
- Initially a search of 200 stars within 150 ly younger than 3 x 10⁹ yrs using an Australian 63 m telescope for 5 minutes on each target.
- Scanned 28 million channels each 1 Hz wide, used multiple settings to scan 1.2 to 13.0 GHz

http://www.seti.org/seti/our_projects/project_phoenix/oveview/overview.html

http://www.planetary.org/html/UPDATES/seti/history/History12.htm http://www.seti.org/about_us/faq.html

Project Phoenix

l	-	•		
			2	
	P		5	

- Just finished up in 2004. (http://www.seti.org/seti/projects/project-phoenix/faq.php).
- About 2-3 weeks a year of telescope time to scan a total of 800 stars (out to 240 lyrs) for a total of 11,000 hours.
- Best survey to date, but no ET signals.

Project Phoenix

- Proof of concept was shown by tracking the Pioneer 10 spacecraft (launched in 1973) that is 6 billion miles away and broadcasting with a few Watts of power.
- The signal was detected.
- As the Earth and object are moving, there is a

small Doppler shift in the frequency of the light received over time.

	MCBA complex amplitude wubband 2005 frame 4 RF -3 100619.5 H≡ right 1 HR mean pwr = -0.265813	NCBA experiment MCBA band NCBA complex	SDS 10 MHz SDS 50 kHz SDS 250 Hz	File Nelp Print
-28 48				
		HCGA waterfall	NCER all make	001
成都是无论的			Satakar	目的
	的人名法法尔尔		込むする	
				(r_{c})
		S		
Sec. Post				
			and the sea	

Allen Telescope Array

- And small dishes- larger field of view.
- But LOTS of them.. planned
- With advanced electronics it will cover 1-10 GHz with many channels.
- Can image a few stars per field.

Allen Telescope Array

- At the BIMA site, UC Berkeley and the SETI Institute, with majority of funding from Paul Allen, are building the ATA.
- 350 antennas that are 6.1 m in diameter, planned.
- Area comparison: Arecibo (70,650 m²) & ATA (10,200 m²) but still > 100 m single dish.

Allen Telescope Array

- 100% SETI (with science on for the ride)
- Will increase search to 100,000 or 1 Million stars.
- Current status is 42 dishes.
- Is now observing!
- <u>http://www.seti.org/ata/</u>

Allen Telescope Array

See the telescope in action:

http://atacam.seti.org/maincam-index.html

The Future?

- Cyclops 1000 telescopes each 100 m in diameter.
- Resembles a giant eye.
- Could detect leakage transmission at 100 ly.
- Could detect a 1000 MW transmission at 1000 lyrs.
- Bucco Bucks– \$50B and 10-20 yrs to build.

http://www.astrosurf.com/lombry/ovni-bioastronomie-et.htm

End All

- The modern SETI searches are really expanding the frequency range in which we search, but we are still sensitivity limited.
- In any SETI experiment, what does a null result mean?

Interstellar Travel

Ì

- But, what if all communication with ET fails?
 - Wrong frequencies.
 - Everyone is listening and no one is broadcasting.
 - We fail to recognize the signal.
- We can go visit them or the microbes. "To boldly go..."
- Human colonization of the Galaxy has to start somewhere. Our own backyard!

Interstellar Travel

- The distances are freaky huge!
- Nearest star is 4.3 ly away or around 4 x 10¹³ km!
- 40,000,000,000 km! 40 TRILLION km!!!
 - Voyager (our fastest spacecraft to date) would take 100,000 years

Humans Spreading Out

Ì

- If we assume that no life is found in our solar system, we have multiple options.
 - Seed other planets with genetically engineered life or terraform the planet for terrestrial life.
 - Colonize the planets or asteroids.
 - Send robots to exploit solar system resources.

GELFs

- Genetic engineering techniques might allow us to develop organisms suitable for life on Mars, in the clouds of Venus, or the upper atmosphere of Jupiter.
- But the most likely organism would be those that are part of a larger plan to transform an environment into one suitable for human colonization.
- Terraforming– forming a planet or moon into something like the Earth conditions.

Spider genes being injected into a goat egg. Goat produces spider silk protein in milk– Biosteel. http://science.howstuffworks.com/designerchildera3.htm http://www.nexiabiotech.com

Terraforming Mars

- 0.1%

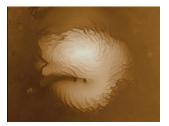
- Mostly envision Mars for terraforming.
- Comparison:

Mars:

- 95.3% carbon dioxide
- 2.7% nitrogen
- 1.6% argon
- 0.2% oxygen
- Why terraform?
 - In 1-2 x 10^9 yrs, Earth will get hot.
 - Other economical possibilities.
- What are the essential ingredients? - Water, Oxygen, and Ozone.
- The bacteria that can build up oxygen need the water.

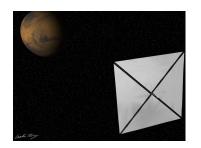
Earth:

- 78.1% nitrogen
- 20.9% oxygen
 - carbon dioxide + trace

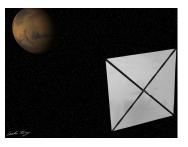


- Sometime movies are full of errors.
- But what can you do?

Wet Mars


- There is clearly water on Mars frozen in the permanent ice caps or in icy deposits below the surface.
- Probably 10¹⁴ tons of ice in the caps, but how to melt it?
- Spread a layer of dark soil, which will sublimate the water to water vapor.
- Water vapor is a greenhouse gas, so eventually pressure and temperature goes up and liquid water can exist.
- Would take about 10,000 yrs to melt.

http://www.ucl.ac.uk/GeolSci/MITC/marsinfo/icecap.jpg


Solar Mirror?

- Could build huge solar mirrors in space to add light to mars- size of Texas for 2% increase.
- Power needed to melt the icecap (remember only first step) is equivalent to 2500 yrs of the US energy output!

Solar Mirror?

- A solar sail satellite (diameter of 125 km) above the pole should melt the icecap in 10 yrs.
- Other options: genetically engineered bacteria to add greenhouse gases, nanobots, etc.
- Bottom line, at this time it would be very costly and time consuming to terraform Mars.

Space Colonies?

- Super-duper version of the Space Station.
- Collect materials from Moon, and make a large space structure.
- Artificial gravity from rotation-life could exist.
- But why?
- Hard to justify the expense.
- Maybe solar power collectorbeaming microwaves back to Earth.

http://static.howstuffworks.com/gif/space-station-space-settlement.gif

Dyson Spheres– Recap

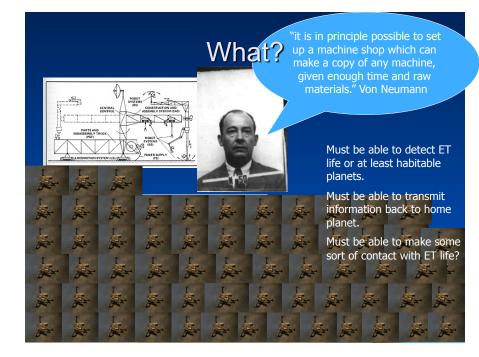
- Again, one could imagine a Dyson Sphere around the Sun to collect the sunlight.
- If other advanced civilizations built one, could we detect it?
- If at 1AU, the sphere would be about 300 K and emit in the IR.
- But if we detected it, we would think it was a star surrounded by dust-- a circumstellar disk of a young star or a blown out shell of dust from an old star.

http://www.homoexcelsior.com/omega.db/ datum/megascale_engineering/dyson_sphere/ 237

Asteroid Living and...

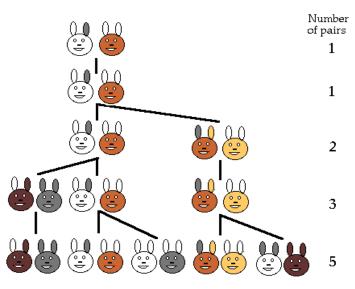
Ì

- Mining the Apollo (near Earth) asteroids for metals is a possible economical driver for life in space.
- But all of this requires moving machines, humans, or material around the solar system.
- Today, if there were piles of gold laying on the Moon, it would not be cost effective to go get it.



Asteroid Living and...

- But, remember to date human space travel has cost 10 times as much as remote "robot" travel.
- Probably devise ways to mine remotely.
- Efficient mining requires more and more intelligent robots.
- What if they get too smart?
- Still self-replicating space probes could be result of such advances.



Space Probed

- A single probe is constructed and dispatched to a nearby star system
- It surveys the system in an intelligent and exhaustive manner
- After which, the probe uses the energy and available raw materials of the system to reproduce itself.

Propagation Run Away

Neumann Space Probed

Ì

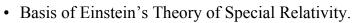
- Dispatches its "children" onwards to repeat its mission in other star systems
- The parent probe is then able to choose whether it wants to stay in the system or not, depending on what it found
- Still need a way to get to other worlds.

http://www.biochem.wisc.edu/wickens/meetings.html

BERSERKERS!!!!!!

- Self-Replicating Devices
- Openly hostile to life forms
- Out of control
- Probe ecosystem?
- Programmed to evolve?

Energy into Propulsion



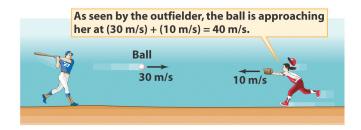
- For any type of space travel, we need an energy source to propel the vehicle.
- The basic idea is to convert some stored energy into *energy of motion* for the spacecraft
- Two ways basically:
 - 1. Process some sort of fuel
 - Carried onboard
 - Collected from space and processed
 - 2. Other, non-fuel-like energy source:
 - Solar (if near a star)
 - Gravity (using an astronomical body's gravity field to propel a ship)

We got a speed limit!

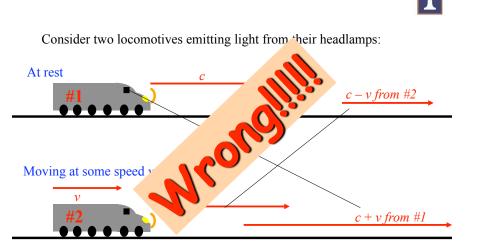
- No matter what we do, we can not go faster than the speed of light!
- That naturally occurs when one demands that the speed of light <u>must</u> be the same regardless of who measures it.
- This is completely counter-intuitive!

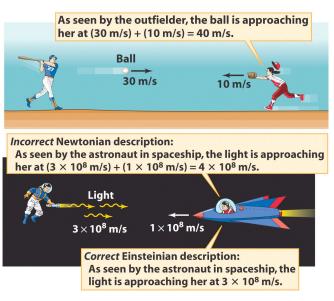

http://www.rpi.edu/dept/phys/Dept2/APPhys1/optics/optics/node4.html

How Fast is Light?



- The speed of light is $c = 3 \times 10^8$ m/s (186,000 miles per second)!
- How fast is that?
 - $-% \left({{\rm{Around}}} \right)$ the Earth over 7 times in a second
 - From Earth to the Moon in under 2 seconds (it took the Apollo astronauts 3 days)
 - From the Sun to the Earth in a little over 8 minutes
 - From the Sun to Pluto in about $5\frac{1}{2}$ hours
 - From the nearest star to Earth, about 4 years




Why Newton and Maxwell Can't Both Be Right

Why Newton and Maxwell Can't Both Be Right

Why Newton and Maxwell Can't Both Be Right

Why Newton and Maxwell Can't Both Be Right

So the speed of light can't be the same for everyone if Newton – and our intuition – are right. But Maxwell says it is constant!

Something must happen. And what must happen for Newton and Maxwell to be both right, is that there is a modification of time and distance. Remember

$$speed = \frac{dist}{time}$$

Distance and time become relative to the observer.

Question

You are at the back of a jet traveling at 400 mph. You shine a laser toward your friend in first class. What speed does your friend measure for the laser light?

- a) c+400 mph
- b) c-400 mph
- c) c
- d) c/400 mph
- e) $c/(c^2-400^2)$ mph

Where c is the speed of light.

Approaching the "c"

- Time dilation Moving clocks run slow.
- Length contraction Moving objects contract along direction of motion.
- Mass increase moving clocks get more massive

http://www.richard-seaman.com/ Travel/Japan/Hiroshima/ AtomicBombMuseum/ IndividualArtifacts/

Ì