Astronomy 330

HW#6 due tonight.

Trent Wright

Next time Presentations:

Rebecca Marcotte & Ryan Smoot

Presentations

Ì

- Mike McCarthy & Tim Nossem: Project Daedalus
- Max Schoenoff & Seth Kelter: The Anthropic Principle

Music: Earthbound- Darin Drda

$$n_e = n_p \times f_s$$

- n_p: number of planets suitable for life per planetary system
- f_s : fraction of stars whose properties are suitable for life to develop on one of its planets

We can list 5 situations that will have an effect on f_s .

http://nike.cecs.csulb.edu/~kjlivio/Wallpapers/Planets%2001.jpg

1. <u>Metal rich stars</u>. Stars with heavy elements, probably more likely to have planets. Suggested in the current planet searches. About 90% of all stars have metals.

Differences of Stars to Life

- ife
- 2. <u>Main sequence stars</u>. Need the brightness to stay as constant as possible. Otherwise the temperature changes dramatically on the planets. This is 99% of all stars.

Differences of Stars to Life

3. <u>Length of time on</u> <u>the main sequence</u>.

We needed temperature stability for 5 billion years to get intelligence on Earth. This rules out stars more massive than 1.25 solar masses! 90% of all stars are less massive than that.

http://mjbs.org/hr.jpg

Differences of Stars to Life

 Minimum mass of star. If ice exists close to the star, that would imply the formation of Jupiter-like planets not Earth-like planets. And, any life bearing planet would have to be closer to the star- and closer to stellar effects (e.g. tidal locking and more flares from low mass stars). That limits us to a minimum of 0.5 solar masses. 25% of all stars are more massive than that.

http://spaceflightnow.com/news/n0401/19planet/planet.jpg

Differences of Stars to Life

- Ì
- 5. <u>Binarity</u>. Planets may form. But they may have odd orbits unless the 2 stars are far enough apart or the planet orbits the pair. Only 30% of all stars are single stars. 50% of all stars are single stars or wide binary stars.

http://spaceflightnow.com/news/n0210/11planet/

Ì

Adding it all up

	Stellar Requirement	Mass Limit	Fraction OK	Cumulative Fraction
✓	Heavy Elements		0.9	0.9
\checkmark	Main Sequence		0.99	0.891
	Main Sequence Lifetime	M < 1.25 M _{sun}	0.90	
	Synchronous Rotation/ Flares	$M > 0.5 \ M_{Sun}$	0.25	
	Not a Binary		0.30	0.267
	Wide Binary Separation		0.50	

Adding it all up

Stellar Requirement	Mass Limit	Fraction OK	Cumulative Fraction
Heavy Elements		0.9	
Main Sequence		0.99	
Main Sequence Lifetime	M < 1.25 M _{sun}	0.90	
Synchronous Rotation/ Flares	$M > 0.5 \ M_{Sun}$	0.25	
Not a Binary		0.30	
Wide Binary Separation		0.50	

Adding it all up

Stellar Requirement	Mass Limit	Fraction OK	Cumulative Fraction
Heavy Elements		0.9	
Main Sequence		0.99	
Main Sequence	M < 1.25 M _{sun}	0.90	
Synchronous Rotation/ Flares	$M > 0.5 \ M_{Sun}$	0.25	
Not a Binary		0.30	
Wide Binary Separation		0.50	

f_s: fraction of stars that life can exist around

Stellar Requirement	Mass Limit	Fraction OK	Cumulative Fraction
Heavy Elements		0.9	
Main Sequence		0.99	
Main Sequence Lifetime	M < 1.25 M _{sun}	0.90	
Synchronous Rotation/ Flares	$M > 0.5 \ M_{Sun}$	0.25	
Not a Binary		0.30	
Wide Binary Separation		0.50	

Value can range from ~ 0.06 to ?

