

Exoplanets: Implications

Ì

Solar Nebula Theory:

• Giant planets born far from star

Exoplanet Data:

• Giant planets found very close

Theory is incomplete/wrong!

- ? Who is normal: Them or us?
- ? Are giant planets born close in?
- ? Are some giant planets born far out, move in? "planet swallowing"!?!

Anyway: Planets are common!

✓ Good news in search for life elsewhere...maybe

Feb 7, 2008

Astronomy 330 Spring 2008

Future Projects

- Atacama Large Millimeter Array (ALMA): 2010
 - mm interferometer: direct detection of young gas giants
- Kepler: Feb 2009
 - Planet Transits
- Next Generation Space Telescope James Webb Space Telescope (JWST): 2013
 - Direct imaging of forming gas giants?
- Space Interferometry Mission (SIM): 2016?
 - Astrometry
- Terrestrial Planet Finder (TPF): Mission 1: deferred
 - Coronagraph
 - IR interferometer
- Terrestrial Planet Finder (TPF): Mission 2: deferred

 A large-baseline infrared interferometer. Imaging extrasolar Earths!!!!

Feb 7, 2008

Astronomy 330 Spring 2008

50? ALMA -- 2010 ★ × 12 m @ 16,400 ft Chajnantor Chile

1.4 meter mirror, measuring accurate brightness of stars.

A terrestrial-sized Earth-like planet would dim the star's light by 1/10,000th – comparable to watching a gnat fly across the beam of a searchlight.

JWST

James Webb Space Telescope: Successor to HST

6.5 meter observatory

Working in the infrared with a coronagraph.

Feb 7, 2008

Astronomy 330 Spring 2008

Space Interferometry Mission

Accurately measure location of stars to microarcseconds.

Need to know relative location of components to 50 pm.

Funding in question.

The Coronagraph Advantage

Feb 7, 2008

Terrestrial Planet Finder Mission: Two Telescopes

- Survey nearby stars looking for terrestrial-size planets in the "habitable zone"
- Follow up brightest candidates looking for atmospheric signatures, habitability, or life itself
- Then, the ultimate: image the little blue dots

Ì

TPF

Visual wavelength 'coronagraph'

- Find Earth-like planets
- Characterize their atmospheres, surfaces
- Search for bio-signatures of life (O₂, H₂O, etc)

Feb 7, 2008

Astronomy 330 Spring 2008

TPF: Step 2

The goal of imaging an Earth-like planet.

5 platforms of 4 eight meter interferometer in space.

Astronomy 330 Spring 2008

spider.ipac.caltech.edu/staff/jarrett ...LiU/origins/openhouse30.html

TPF

Visual wavelength `coronagraph'

Feb 7, 2008

Feb 7, 2008

- Find Earth-like planets
- Characterize their atmospheres, surfaces
- Search for bio-signatures of life (O₂, H₂O, etc)

Pixel / Pixel size @ planet (km) Interferometer Requirements **Collecting Area** Baselin 144 km² 100,000 km 1.295 km 5,000 km 24,000 km 1,200 km 100 0.64 km² 5.76 km² Pixel size @ planet (km) Pixel / Interferometer Requirements Diameter **Collecting** Area Baseline 1,024 m² 6,000 km 9,216 m² 303 km 25 2,4km 10 1276 64 m² 576 m² 120 km

Astronomy 330 Spring 2008

TPI -- Scales

Disks in Binary Systems

- >60% of all stars are in binary or multiple systems.
- We do see circumstellar disks in binary systems
- We do see exoplanets in binary systems.
- But we also see effects of the binary on the disk.
 - Still unclear how large of an effect.

Astronomy 330 Spring 2008

Now, for f_p

- Extrasolar planet searches so far give about $f_p \sim 0.03$, but not sensitive to lower mass systems.
- Maximum is 1 and lower limit is probably around 0.01.
- A high fraction assumes that the disks often form a planet or planets of some kind.
- A low fraction assumes that even if there are disks, planets do not form.
- <u>This is not Earth-like planets, just a</u> <u>planet or many planets.</u>

Now, for f_p

- About 2/3 of all stars are in multiple systems.
 - Is this good or bad?
- Disks around stars are very common, even most binary systems have them.
- Hard to think of a formation scenario without a disk at some point- single or binary system.
- Disk formation matches our solar system parameters.
- We know of many brown dwarves, so maybe some planets do not form around stars.
 - There might be free-floating planets, but...

		Dra	ake Eq	quatio	n		TEL
	Earth Chauvinism?				Frank Drake		
				Detter		· ·	and the second
N =	= R*	$\times f_{p}$ >	< n _e :	× f _l	$\times f_{i}$	$\times f_{c}$	×L
# of advanced civilizations we can contact in our Galaxy today	Star formation rate	Fraction of stars with planets	# of Earthlike planets per system	Fraction on which life arises	Fraction that evolve intelligence	Fraction that commun- icate	Lifetime of advanced civilizations
	19	?	planets/	life/	intel./	comm./	yrs/
	stars/	systems/	system	planet	life	intel.	comm
	yr	star					
Feb 7, 2008		Astronomy 330 Spring 2008					

n_e

Complex term, so let's break it into two terms:

- n_p: number of planets suitable for life per planetary system
- f_s: fraction of stars whose properties are suitable for life to develop on one of its planets

http://nike.cecs.csulb.edu/~kjlivio/Wallpapers/Planets%2001.jpg

 $n_e = n_p \times f_s$

Feb 7, 2008

Astronomy 330 Spring 2008

Our Solar System

Terrestrial planets and Gas Giants... but how many are valid planets/moons for n_p ?

$n_e = n_p \times f_s$

- n_p: number of planets suitable for life per planetary system (an average per planetary system)
- f_s: fraction of stars whose properties are suitable for life to develop on one of its planets

Feb 7, 2008

http://nike.cecs.csulb.edu/~kjlivio/Wallpapers/Planets%2001.jpg

Astronomy 330 Spring 2008

Radius0.272 EarthSurface gravity0.17 EarthMass0.012 EarthDistance to Earth384,000 kmOrbital Period27.3 daysSolar day27.3 days

Formation of the Earth

- Focus on the formation of the Earth, including its atmosphere and oceans.
- Earth formed from planetesimals from the circumstellar disk.
- Was hot and melted together.
- The biggest peculiarity, compared to the other planets, is the large moon.

A Double World

Why a "double world"?

- Most moons are tiny compared to the planet
 - The Moon is over 25% the diameter of Earth
 - Jupiter's biggest moons are about 3% the size of the planet
- The Moon is comparable to the terrestrial planets
 - About 70% the size of Mercury
 - Nearly the same density as Mars

Earth and Moon together from Voyager 1

Feb 7, 2008

Astronomy 330 Spring 2008

Feb 7, 2008

Astronomy 330 Spring 2008

The Moon

The Moon's surface is barren and dead

- No water, no air
- No life!

Formation of the Moon: Smack

- Collision of Earth with a Marssized body early in the solar system's history
- Iron-rich core of the impactor sank within Earth
- Earth's rotation sped up

• Remaining ejecta thrown into orbit, coalesced into the Moon

Formation of the Moon: Smack

- Collision of Earth with a Marssized body early in the solar system's history
- Iron-rich core of the impactor sank within Earth
- Earth's rotation sped up
- Remaining ejecta thrown into orbit, coalesced into the Moon

Astronomy 330 Spring 2008

Moon Life?

J. Tucciarone

- Some think that our large Moon is very important for life on Earth.
 - Tides! Important to move water in and out of pools.
 - Stable Axial Tilt: 23.5 deg offset from the collision
 - Metals! Heavy elements at Earth's surface may be from core of impactor.

Why is this a good hypothesis?

- The Earth has a large iron core (differentiation), but the moon does not.
 - The debris blown out of collision came from the rocky mantles
 - The iron core of the impactor merged with the iron core of Earth
- Compare density of 5.5 g/cm³ to 3.3 g/cm³— the moon lacks iron.

http://www.flatrock.org.nz/topics/odds_and_oddities/assets/extreme_iron.jpg

Feb 7, 2008

Astronomy 330 Spring 2008

Implications

- Hot, Hot, Hot! Even if the moon theory is incorrect, other smaller bodies were playing havoc on the surface.
- When they impact, they release kinetic energy and gravitational potential.
- In addition, some of the decaying radioactive elements heated up the Earth– stored supernova energy!
- The planetesimals melt, and the Earth went through a period of differentiation.

http://www.michaelbach.de/ot/sze_moon/index.html

Early Earth

- No atmosphere
- No water
- High temp
- No life.....
- Big rocks keep falling on my head...

Planetary Differentiation

Ì

Feb 7, 2008

Astronomy 330 Spring 2008

http://www.black-cat-studios.com/catalog/earth.html

Feb 7, 2008

Astronomy 330 Spring 2008

- Average density of Earth is 5.5 g/cm³
- Average density on the surface is 3 g/cm³
- So, something heavy must be inside
- When the Earth formed it was molten
 - Heavy materials (e.g. iron, nickel, gold) sank
 - Lighter materials
 (e.g. silicon, oxygen) floated to the top

Structure

- Luckily, not all of the iron sank to the center, else we would be still in the Stone Age.
- Temperature increases as you go deeper underground. From around 290 K on surface to nearly 5000 K at center.
 - Heated by radioactive decay
 - Supernovae remnants
- Earth's magnetic field is established early on.. after the iron catastrophe... good for life.

The Crust

- Outside layer of the Earth (includes oceans) floats on top of still hot interior
 - About 50 km thick
 - Coldest layer rocks are rigid
- Mostly silicate rocks
 - Made of lighter elements like silicon, oxygen, and aluminum
- Oxygen and water are abundant
- Excellent insulator
 - Keeps the Earth's geothermal heat inside!

Feb 7, 2008

Astronomy 330 Spring 2008

Geologically Active Surface

- The young rocks on the Earth's surface indicate it is geologically active
- Where do these rocks come from?
 - Volcanoes
 - Rift valleys
 - Oceanic ridges
- Air, water erode rocks
- The surface is constantly changing

Today's Earth Surface

- 70% of the Earth's surface is covered with water
 - Ocean basins
 - Sea floors are young, none more than 200 million years old
- 30% is dry land Continents
 - Mixture of young rocks and old rocks
 - Up to 4.2 billion years old

Astronomy 330 Spring 2008

In Hawaii

Recycling Bio-elements

- From gravity and radioactivity, the core stays hot.
- This allows a persisting circulation of bioelements through continental drift— melting of the crust and re-release through volcanoes.
- Otherwise, certain elements might get locked into sediment layers- e.g. early sea life.
- Maybe planets being formed now, with less supernovae, would not have enough radioactivity to support continental drifts and volcanoes. (Idea of Peter Ward and Donald Brownlee.)

http://www.pahala-hawaii.com/j-page/image/activevolcanoe.jpg

The Earth's 1st Atmosphere

- The interior heat of the Earth helped with the Earth's early atmosphere.
- The inner disk had most gases blown away and the proto-Earth was not massive enough to capture these gases. And any impacts (e.g. the moon), would have blown the atmosphere away.
- One scenario is that impacted comets released – water (H₂O), carbon dioxide (CO₂), and Nitrogen (N₂) – the first atmosphere.

• The water condensed to form the oceans and much of the CO₂ was dissolved in the oceans and incorporated into sediments–such as calcium carbonate (CaCO₃).

```
Feb 7, 2008
```

```
Astronomy 330 Spring 2008
```

```
http://www.fli-cam.com/images/comet-liner.jpg
```

Feb 7, 2008

Astronomy 330 Spring 2008

Our Atmosphere

- Rocks with ages greater than <u>2 billion</u> years show that there was little or no oxygen in the Earth's atmosphere.
- The current composition: 78% nitrogen, 21% oxygen, and trace amounts of water, carbon dioxide, etc.
- Where did the oxygen come from?
- Cyanobacteria made it.
 - Life on Earth modifies the Earth's atmosphere.

 $http://www.uweb.ucsb.edu/\!\!\sim\!\!rixfury/conclusion.htm$

This New Planet

Ì

- Mostly oceans and some solid land (all volcanic).
- Frequent impacts of remaining planetesimals (ending about 3.8 billion years ago).
- Impacts would have sterilized the young Earth– Mass extinctions and maybe vaporized oceans (more comets?).

This New Planet

- Impacts and volcanic activity created the continental landmasses.
- Little oxygen means no ozone layer– flooded with ultraviolet light on surface.
- Along with lightning, radioactivity, and geothermal heat, provided energy for chemical reactions.

Water

- Water is a key to life on Earth.
- Primary constituent of life- "Ugly bags of mostly water" - Life is about 90% water by mass.
- Primary role as a solvent
 - Dissolves molecules to bring nutrients and remove wastes. Allows molecules to "move" freely in solution.
 - Must be in liquid form, requiring adequate pressure and certain range of temperatures.
- This sets a requirement on planets, if we assume that all life requires water.

Feb 7, 2008

Astronomy 330 Spring 2008

Water as a Solvent

- The water molecule is "polar". The oxygen atoms have more build-up of negative charge than the hydrogen. This allows water molecules to link up, attracted to each other.
- In this way, water attracts other molecules, surrounds them and effectively dissolves them into solution.

Example: Dissolving Table Salt

Astronomy 330 Spring 2008

The partial charges of the water molecule are attracted to the Na⁺ and Cl⁻ ions. The water molecules work their way into the crystal structure and between the individual ions, surrounding them and slowly dissolving the salt.

Feb 7, 2008

Feb 7, 2008

Water: Our Liquid Friend

- A very good temperature buffer
 - Absorbs significant heat before its temperature changes
 - When it vaporizes, it takes heat with it, cooling its original location
- It floats.
 - Good property for life in water.
 - Otherwise, a lake would freeze bottom up, killing life.
 - By floating to the surface, it can insulate the water somewhat.

Keeping it Useful: Atmosphere

- Need to have enough pressure to keep water from boiling away at low temperature
 - Cooking at higher elevation requires more time. Boiling point lowered: water doesn't get as hot.
 - If pressure too low, water goes directly from ice to vapor (like dry ice CO₂)
- On the other hand, high pressure may make life more difficult to form.

• In addition, the range of temperature for Earth based complex life is less than 325K.

Feb 7, 2008

Astronomy 330 Spring 2008

Keeping It Warm, but not too Warm

- What controls a planet's temperature?
 - The amount of light received from its star.
 - The amount of energy the planet reflects back.
 - And any Greenhouse effects of the planet.

Keeping It Warm, but not too Warm

Astronomy 330 Spring 2008

- Earth's greenhouse effect raises the temperature by about 15%.
- Given a star's luminosity, a range of acceptable temperatures translates into a range of distances to the star.
- This range is called the star's habitable zone (HZ), as

planets in this range have temperatures suited for life.

• Only a rough guideline.

http://www.astro.su.se/~magnusg/large/Boiling water.jpg

Habitable Zones– Are you in the Zone?

- Long living star
- Planets with stable orbits (thus stable temps)
- Liquid Water
- Heavy Elements- C, N, O, etc.
- Protection from UV radiation

Feb 7, 2008

Astronomy 330 Spring 2008

The Sun's Variation

- As the Sun ages, it gets slightly brighter.
- When it was younger, its luminosity was 70% current values.
- A young Earth should have been 20K colder-iceball!
- During our ice ages, the temperature only changed by about 1%.

http://www.cherishclaire.com/iceball.htm

Galactic Habitable Zone

- Likewise the galaxy has regions that are better suited to life.
- In the inner regions of our galaxy, supernovae are too frequent.
- In the outer regions, there are too few metals.
- Simulation of Galaxy Zone from early stages to now.

http://astronomy.swin.edu.au/GHZ/GHZmovie.html

Feb 7, 2008

Astronomy 330 Spring 2008

The Sun's Variation

- There is evidence that the Earth did nearly freeze over-2.8 billion years ago and 700 million years ago.
- Probably changes in the Greenhouse gases.
- This implies that the habitable zone can vary with time, thus the real habitable zone is smaller than shown before?
- Some have postulated that real zone is only 0.95 to 1.01 AU! If the Earth were 1% farther away– Iceballed. And n_p would be very small ~ 0.1.

http://www.soest.hawaii.edu/gerard/GG108/images/bylot.jpg

Earth's Atmosphere

- Most recent studies suggest an efficient planet negative-feedback mechanism (like a thermostat).
- CO_2 cycles from atmosphere (greenhouse gas) and oceans (buried sediment especially carbonate rock).
- CO₂ in atmosphere: temporarily dissolved CO₂ in rainfall reacts with weathered rocks, trapping it.
- Carbon is buried and can be released by volcanoes.
- Negative feedback process
 - Increase in temperature: evaporation of oceans, more rainfall, more weathering and CO_2 reduction, so decrease in temperature.
 - This negative feedback stabilizes the Earth's temperature.

Feb 7, 2008

Astronomy 330 Spring 2008

http://www.wildtech.org/images/feedback.git

- Life Adds to Feedback
- Life increases the weathering of rock.
- J.E. Lovelock has proposed that life also stabilizes the planet temperature.
- Regardless, the negative feedback helps with the habitable zone, so we can estimate perhaps n_n is more around 1– more Earth chauvinism?

While testing out his new cereal mix on his horse, Dave gets some unexpected feed-back

```
Feb 7, 2008
```

Astronomy 330 Spring 2008

Optimism?

- Carl Sagan argues for $n_n > 3$.
 - If Venus had less clouds (less greenhouse) it could have been cool enough for life.
 - If Mars had a thicker atmosphere it could have been warm enough for life.
 - If solvents other than water were used, maybe the moons of the outer planets?
 - Giant Jupiter-like planets close in?

Pessimism?

- We only considered temperature. What about:
 - Gravity?
 - Atmospheric pressure?
 - Size of the moon or planet?
 - Does life need a Moon-like moon? Does life need the tides? Does the Moon protect the Earth's rotation? Is a Jupiter needed?
- If we impose Earth chauvinism, we can easily reduce to $n_p \sim 0.1$

n_p: number of life planets per planetary system (average)

- Can range from 0.01 to >3.
 - Is seismic activity necessary to recycle bioelements?
 - How important is the first atmosphere? Ozone?
 - Is a moon needed? A large Jupiter-like planet?
 - Is liquid water a requirement? Other solvents okay?
 - Not too hot, not too cold; not too much pressure, not too little– Goldilocks requirement?
 - Habitable Zone around the star.
 - Galactic Habitable Zone
 - Does atmosphere need feedback mechanism?
 - But in our solar system, maybe 5 nearly possible life planets.

Feb 7, 2008