

Evolution of Intelligence

- First, we will examine the diversity of life; the • fossil record shows a huge diversity with time.
- Organisms range from bacteria to humans.
- 1.8 x 10⁶ known species
 - Insects account for most (1.0×10^6)
 - Estimated that only 10% are known.
 - Bacteria are hard to classifyonly 7700 species so far.

Evolution of Intelligence

- "The ability to model the world, including the organism's own self" is a workable definition.
- Crucial development for the full spectrum of intelligence is the
- Intelligence is not a requirement

http://www.amonline.net.au/insects/images/site/insect1.ip

Evolution of Intelligence

- Remember that all of these organisms use nearly identical genetic codes, so life descended from a common ancestor.
- Primary challenge of biology is to explain how life from a single type of organism, diversified so much.
- Evolution is the primary concept.

Life

If we took all the biomass of all the animals, and all the biomass of all the viruses, bacteria, protozoa, and fungi– who weighs more?

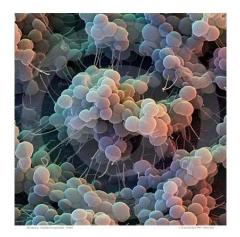
Around 90% of all biomass on the Earth is in the smallest and simplest lifeforms.

March 11, 2008

Astronomy 330 Spring 2008

You or not you?

- This is more non-you cells in your body than youcells in your body!
 - You are outnumbered 10 to 1!
 - Mostly on your skin and in your digestive track



Bacteria under a toe-nail

http://news.nationalgeographic.com/news/2007/02/070206-skin-microbes.html

Bacteria

- 40 million bacterial cells in a gram of soil
- 1 million bacterial cells in a milliliter of fresh water
- Something like five nonillion (5 × 10³⁰) bacteria in the world.

Staph bacteria	
http://www.scharfphoto.com/fine_ar	t_prints/archives/000608.ph

March 11, 2008

Astronomy 330 Spring 2008

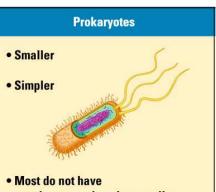
Classification of Life

Prokaryotic cell Nucleoid region

- 1. Prokaryotes
 - No cell nucleus– DNA floating around
 - Always single-cell creatures like bacterium
 - Came first
 - Outnumber and outweigh the second class (eukaryotes)

Eukaryotic cell Nucleus Organelles

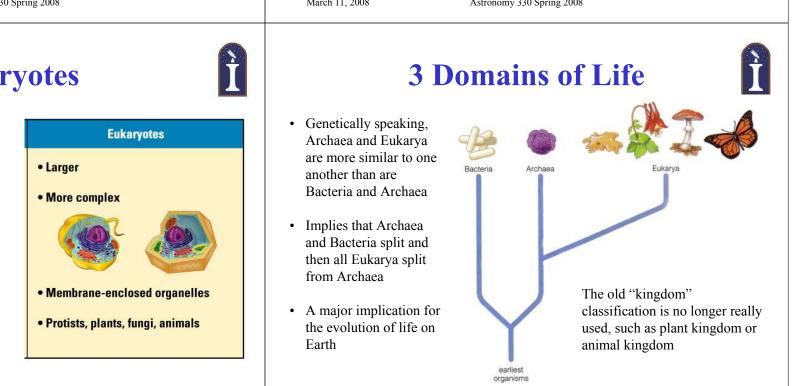
Classification of Life


Prokaryotes

Divided into 2 domains:

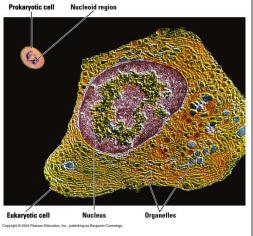
- Eubacteria or "true" bacteria 1
- 2 Archaea
 - 20% of the world's biomass.
 - Thought to be the oldest surviving organisms.
 - Often found in harsh environments: hot springs, undersea vents, salty seashores, etc, which were probably more common on the early Earth.
 - Some evidence that ancient _ organisms were heat-lovers (maybe)

Carl Woese here at UIUC, discovered Archaea scheme.



- membrane-enclosed organelles
- Bacteria and archaea

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.


March 11, 2008

Astronomy 330 Spring 2008

Eukarvotes 2.

- Have a cell nucleus, a membrane to protect the DNA
- Basis of all multi-cell creatures
- Also some single-cell creatures like amoebas.
- DNA arranged into chromosomes in nucleus-23 pairs for humans.

March 11, 2008

Astronomy 330 Spring 2008

Eukaryotes

• All animals, plants, and fungi.

Genetic Relations

- This is a major change from the old methods of assigning groups based on outward form and anatomy.
- Instead based on studies of the genetic code.
- Surprise: Human and chimpanzees share about 99% of the same DNA, and about 97% with mice.
- Surprise: 2 species of fruit fly look very much alike, but only share about 25%. Some of this differences is due to *"junk"* DNA.

March 11, 2008

Astronomy 330 Spring 2008

http://www.pritchettcartoons.com/fruitfly.htm

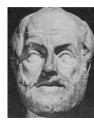
For the Species Survival

Population with varied inherited traits

ination of individuals with certain traits

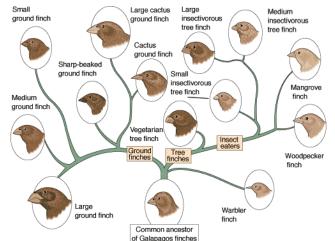
- Darwin (1809–1882) & Malthus (1766-1834):
 - Populations can grow faster than food sources can support them.
 - Creates a struggle for survival that can wipe out competitors.
 - Individual variations has advantages or disadvantages in the struggle for survival
 - Natural selection can create unequal reproductive success

Increasing frequency of traits that enhance survival and reproductive success


Copyright © 2001 by Benjamin Cummings, an imprint of Addison Wesley

March 11, 2008

Changes in Bio-Systems


- Today's view: evolution is the most important and unifying property of life.
- Anaximander (c. 610–547 BC): life arose in water and gradually became more complex
- Empedocles (c. 492–432 BC): survival of the fittest (but, "a good idea stated within an insufficient theoretical frame loses its explanatory power and is forgotten" by Hans Reichenbach)
- Aristotle (384–322 BC): species are fixed and independent of each other \rightarrow evolution discarded for 2000 years
- Fossil record: slowly broke down the Aristotelian theory

March 11, 2008

Astronomy 330 Spring 2008

Filling the Niche with Finch

- Other Evidence:
- Adapted species in the Galápagos Islands in particular finches
- Artificial breeding of house/farm animals and vegetables
- DNA is really the mechanism of natural selection. but evolution requires both heredity and environment

Mutant Sex

- Mutations from changes in the bases of DNA.
- Usually copying errors, but also radiation– radioactivity, cosmic rays, chemical agents, or UV light.
- About 3 mutations per person per generation.
- Most mutations are neutral, changes in the *junk* DNA.
- Why is sex important to this class?

http://www.mutantx.net/features/press vw sexy.html

http://www.mutantx.net/features/press_vw_sexy.ht

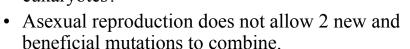
March 11, 2008

Astronomy 330 Spring 2008

Does it take a long time?

Cabbage, kale, kohlrabi, brussels sprouts, cauliflower and broccoli have same common ancestor– wild mustard. All bred by humans on a very short time scale.

This is selective breeding, but still the potential is in the DNA.



Or domestic lap dogs from wolves in about 5000 years.

Mutant Sex

• Sexual reproduction leads to greater genetic diversity– a difference between prokaryotes and eukaryotes?

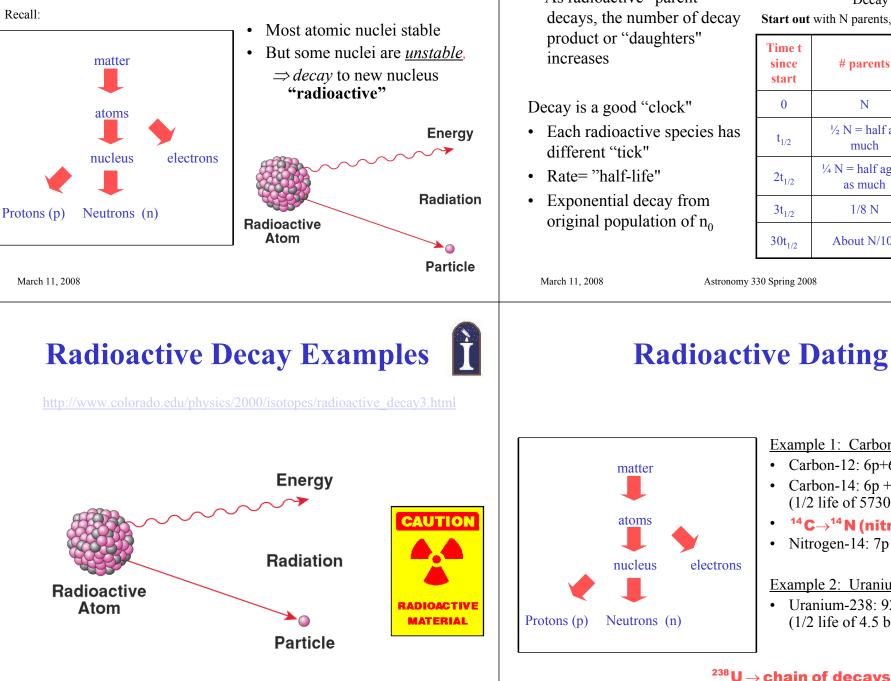
- Blackberries have not changed much in 10 millions years, but sexual plants have produced: raspberries, thimbleberries, cloudberries, dewberries, etc.
- Sex is useful in the process, but the mutations are still key.

http://www.alcasoft.com/arkansas/blackberry.html

March 11, 2008

Astronomy 330 Spring 2008

Comparing Ages


- Important to understand history of Earth life is the ability to age different components
- Can be difficult
- Radioactive dating....
 - ¹⁴C for the last 60,000 years
 - $\,^{40}K$ and $^{235}U\,$ for 100's of millions of years

Radioactive Dating

Astronomy 330 Spring 2008

The Law of Radioactive Decay

As radioactive "parent" decays, the number of decay

• Each radioactive species has

March 11, 2008

Start out with N parents, 0 daughters				
Time t since start	# parents	# daughters		
0	Ν	0		
t _{1/2}	¹⁄₂ N = half as much	¹ / ₂ N have appeared		
2t _{1/2}	¹ / ₄ N = half again as much	³∕4 N		
3t _{1/2}	1/8 N	7/8 N		
30t _{1/2}	About N/10 ⁹	99.9999999% N		

Decay Rule

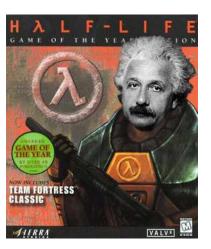
Astronomy 330 Spring 2008

Example 2: Uranium U=92p

• Uranium-238: 92 p + 146 n (1/2 life of 4.5 billion years)

Example 1: Carbon C=6p • Carbon-12: 6p+6n, stable

 $^{14}C \rightarrow ^{14}N$ (nitrogen)


• Nitrogen-14: 7p + 7n, stable

• Carbon-14: 6p + 8n, unstable (1/2 life of 5730 years)

238 U \rightarrow chain of decays \rightarrow^{206} Pb (lead)

Carbon-14

- Cosmic rays from space are constantly hitting the Earth.
- React with ¹⁴N in atmosphere to create ¹⁴C.
- Decays back to ¹⁴N with half life of 5730 years.
- But, there is an equilibrium in abundance
- In atmosphere, the ¹⁴C is mostly in ¹⁴CO².

http://bbspot.com/Images/News_Features/2003/12/half-life.jpg

Carbon-14

- Plants take in ¹⁴CO² with the ¹²CO² and other animals eat the plants.
- So, every living creature has a equilibrium ratio of ¹⁴CO²/¹²CO².
- When the organism dies, the ¹⁴C decays to ¹⁴N. By measuring how much ¹⁴C remains, you can date the fossil.
- This works well to about 60,000 years.

http://web.mit.edu/smcguire/www/newfoundland/newf16.html

- Viking remains in Newfoundland– 500 yrs before Columbus.
- Shroud of Turin to 1330 AD

March 11, 2008

Astronomy 330 Spring 2008

Era	Period	Myr Ago	Life Forms	Events
Cenozoic	Quaternary	2	H. Sapiens	Ice ages
	Tertiary	65	Primates	Extinction of Dinosaurs
Mesozoic	Cretaceous	136	Birds	S. Atlantic open to 1900 miles
	Jurassic	190		N. Atlantic open to 600 miles
	Triassic	225	Mammals	Continental drift
Paleozoic	Permian	280	Reptiles	Pangaea breaks up
	Carboniferous	345	Amphibians	Formation of coal
	Devonian	395	Insects	
	Silurian	430	Land Plants	
	Ordovician	500	Fish	
	Cambrian	543	Trilobites	
Precambrian		545	Small Shelly Fossils	
		580	Ediacarans	
		600-800	Multicellular life	Snowball Earth episode

Astronomy 330 Spring 2008

Dating Rocks

- First you ask them out?
- No, you need a radioactive decay that has a longer half-life than ¹⁴C.
- Potassium-argon
 - $-~^{40}\text{K}$ decays to ^{40}Ar with a 1200 Myr half-life.
- Uranium-lead
 - $-~^{235}\text{U}$ to ^{207}Pb with 700 Myr half-life.
- But these only work with volcanic layers.
- So, the ages of fossils are interpolated from ages of volcanic layers above and below them.

Increase of Complexity

- Last table showed only the last 800 Myrs.
- The more complex and intelligent organisms appeared towards the end.
- For many years it was thought that life originated in the Cambrian era, then Precambrian fossils were found.
- Then, it was realized that there were single-celled fossils that required microscopes.

March	11.	2008
withton	11,	2000

Astronomy 330 Spring 2008

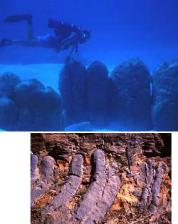
Concepts

- As prokaryotes are simpler than eukaryotes, we expect them to exist first.
- Identifying fossil prokaryotes is difficult: they're tiny!
- But there is enough evidence that before 1500-2000 Myrs ago there are only prokaryotes fossils.
- Note: the oldest fossils (3800 Myrs ago) are under some dispute, but the 2800 Myr old fossils are universally accepted.
- All of the macroscopic life only arose in the last 600 Myrs– 1/6th of the history of life on Earth.

Myr Ago	Era	Event
Now	Cenozoic	
	Mesozoic	
	Paleozoic	Macroscopic life/Snowball Earth
	Precambrian	
1000		Worm tracks
		Multicellular algae
		Eukaryotes certain
		Sexual reproduction
2000		Eukaryotes possible
	Protozoic	Oxygen-rich atmosphere
		Snowball Earth
		Formation of continents
3000	Archean	Life begins?
4000		Formation of Oceans
		Bombardment decreases
		Frequent impacts
	Hadean	Earth formed

Making Oxygen!

- The early prokaryotes played a crucial role for life on Earth by producing oxygen through photosynthesis.
- Cyanobacteria (also called blue-green algae) changed the world!
- Lived in colonies that formed mats or films, growing into large structures called stromatolites.
- Still around, but much more common before 700 Myrs ago.



http://www.earth.ox.ac.uk/research/geobiology/geobiology.htm

Making Oxygen!

- Oxygen was new and important step in intelligence
- It allowed a new energy extraction method
 - Aerobic (using oxygen) metabolism
 - More complex life.
 - Created ozone layer (dry land now an option for life on Earth).

Relationship to ETs

- Would evolution on other planets have a similar time-scale?
- Evolution is not a deterministic process.
- Selection seems to be mostly luck, rather than adaptation.
- On the other hand, many traits have developed in several lineages- warm blood and eyes.
- Some say that intelligence seems to increase in many lineages, so it is likely that if live exists then intelligent life exists.

Astronomy 330 Spring 2008

• On the other hand, the plant kingdom never developed neurons.

March 11, 2008

Astronomy 330 Spring 2008

Summary

- This following slides are from: <u>http://www.udayton.edu/~INSS/</u>
- Nice timeline of life on Earth.

