Astronomy 330

HW #3

This class (Lecture 15):

Life in the Solar System

Next Class:

Biological Evolution

Music: The Universe Song- Animaniacs

Mar 6, 2008 Astronomy 330 Spring 2008

È

Outline

- Life in our Solar System?
 - Jupiter (Europa)
 - Saturn (Titan)

• Gretchen Bromann:

http://www.pararesearchers.org/

• Kyla Bachtell:

http://www.nuforc.org

Drake Equation

Astronomy 330 Spring 2008

That's 0.67 Life-liking systems/year

Mar 6, 2008

advanced civilizations we can contact in our Galaxy today

of

Star formation rate Fraction of stars with planets

of Earthlike planets per

Fraction on which life arises

ion Fraction lich that evolve ses intelligence

Fraction that communicate

Lifetime of advanced civilizations

19 stars/

yr

Mar 6, 2008

0.4 systems/ star 1.25 x 0.07 = 0.0875 planets/

Astronomy 550 Spring 2006

system

system

life/ planet

intel./ life comm./

yrs/ comm.

Life in the Solar System

Ì

Jupiter

- Venus may have life in the clouds.
- Mars might still have life under the soil.
- But what about the outer solar system?
- It isn't in our definition of the habitable zone, but it still is interesting.
- We will now focus on Jupiter, Io, Europa, and Titan.

Mar 6, 2008

Big Boy?

Jupiter, King of the Planets

- Named for the king of the Roman gods
- A truly immense planet
 - Over 11 times the diameter of Earth
 - Over 300 times the mass of Earth
 - Over twice the mass of all the other planets combined!
 - Has over 63 moons, its own mini-solar system!
- Visited by 4 spacecraft
 - Pioneer 11 Flyby in 1979
 - Voyagers 1 & 2 Flybys in 1980 & 1981
 - Galileo Went into orbit and dropped a probe into Jupiter's atmosphere, 1990-2003

Jupiter's Atmosphere

Although mostly gas, by 20,000 km in, the pressure is 3 million atmospheres!

Due to an internal heat source, the temperature rises as one penetrates the atmosphere.

• The outer atmosphere is made of freezing clouds of ammonia, methane, and ice.

• The swirling patterns are evidence of great storms.

Can you say Miller-Urev?

Mar 6, 2008

Astronomy 330 Spring 2008

Mar 6, 2008

Astronomy 330 Spring 2008

The Galileo Spacecraft (1989 – 2003)

First atmospheric probe

Probing the Atmosphere

- The probe lasted for 57 minutes before it was destroyed by temperature and pressure.
- Found a lot of turbulence. strong winds (330 mph), very little water ice, and no lightning.

should have looked

How the main antenna

Mar 6, 2008

Mar 6, 2008

Probing the Atmosphere

- Did not encounter the layers of clouds that was expected.
- The probe entered the least cloudy region of Jupiter.
- Did not rule out life. but did not support it.
- Later, the spacecraft Galileo was crashed into Jupiter.

Mar 6, 2008 Astronomy 330 Spring 2008

What Did Galileo Experience?

- An atmosphere unlike Earth's
 - 92% Hydrogen, 8% Helium, 0.1% other stuff
 - Very similar to the Sun's composition
 - Not too far from a binary star system
 - Rich chemistry
 - Ammonia, methane, other hydrocarbons, water, phosphine, etc..
- 400 mph winds
- Incredible pressures
- Increasing temperatures with depth

Mar 6, 2008

Astronomy 330 Spring 2008

Driving Jupiter's Weather

- On Earth, solar heating drives weather
- On Jupiter, internal heat drives weather
 - Winds maintain speeds to great depths
 - Jupiter radiates 70% more heat than it receives from the Sun
 - The heat is from Jupiter contracting under its own powerful gravity
 - As it contracts, the gas is squeezed, and the temperature increases

The Great Red Spot

- A huge storm 25,000 km across twice size of the Earth!
- First observed > 300 years ago!

Voyager 1 image

Cassini images

Mar 6, 2008

Little Red Spot

Space Telescope • Advanced Camera for Surveys

Mar 6, 2008

Astronomy 330 Spring 2008

- The atmosphere resembles the conditions of the Miller-Urey experiment.
- The red bands and spots may be biological molecules.
 - The Miller-Urey experiment produces amino acids and red polymers.
 - Carl Sagan suggested that the atmosphere might be an optical photochemistry, like photosynthesis but more effective. Not much evidence for such a statement.
- But, constant churning of the atmosphere probably makes development of complex life nearly impossible.

Icy ammonia (light blue) discovered by Galileo

Mar 6, 2008

Astronomy 330 Spring 2008

Life?

- Carl Sagan and Edwin Salpeter devised a scheme for life in the clouds of Jupiter.
- They argued that the atmosphere must be rich in organic chemistry, so why not expect Earth-like life?

http://tierra.rediris.es/merge/Carl_Sagan/192a.jpg http://www.aip.org/history/esva/catalog/images/salpeter edwin a3.jpg

Mar 6, 2008 Astronomy 330 Spring 2008

Floating Life

- The problem is that any life in the clouds that sank too far down would be destroyed by the temperature or pressure.
- They proposed a simple life form like oceanic plankton called "sinkers".
- Small (0.1 cm) life that grew and fell, but then replicated by "splitting-up" and getting circulated back into the upper atmosphere.

http://www.wackerbaits.com/sf/media/bellsinker.jpg http://www.mantapacific.org/mantapacific/information/images/plankton.jpg

Mar 6, 2008 Astronomy 330 Spring 2008

Floating Life

- The sinkers became the basis of a proposed ecology.
- They also posited "floaters"— large hydrogen balloon-like life that "swim" in the Jovian atmosphere.
- They could be huge creatures, as large as 1 to 2 km in diameter.

http://www.firaxis.com/smac/nativelife.cfm

Floating Life

- Maybe similar to whales mixture between jellyfish and birds?
- Big bags of hydrogen gas.
- Maybe there are also "hunters" that fed on the floaters?
- Of course, this is all speculative, and there is no way to detect such life.
- Science fiction from scientists really.

http://www.epilogue.net/cgi/database/art/list.pl?gallery=3126

Mar 6, 2008

Astronomy 330 Spring 2008

Mar 6, 2008

Astronomy 330 Spring 2008

Jupiter's Interior

- Average density only 30% greater than water
- 25% that of the Earth's average density
- By 20,000 km, the pressure is 3 million times that on the Earth's surface!
 - Hydrogen becomes a liquid metal
- Core of rock & "ice" 10-12 Earth masses

Jupiter's Magnetosphere

- Liquid metal hydrogen generates a magnetic field
 - 14x stronger than Earth's field
 - Over 4 million km across
- A ring of ionized particles surrounds Jupiter
 - Stripped from Jupiter's moon Io

Mar 6, 2008 Astronomy 330 Spring 2008 Mar 6, 2008 Astronomy 330 Spring 2008

Jupiter's Rings

Ì

- Jupiter has rings!
- Discovered by the Voyagers
- Not prominent like Saturn's
- Dusty disk of debris, probably from meteoroid impacts with small moons

Mar 6, 2008

Before & after

Io

Ì

- Innermost Galilean moon the "pizza moon"
- The most volcanically active body in the solar system.
- Voyager 1 discovered presence of volcanoes
- Internal heating by Jupiter's tides
- Atmospheric gases ripped off by Jupiter's magnetic field ion torus

The Galilean Moons

- Io is active.
- Europa is now thought to be the best option for life.
- But, Ganymede and Callisto are contenders perhaps for ancient life.

Mar 6, 2008

Astronomy 330 Spring 2008

Europa

Ì

- Slightly smaller than our Moon.
- Icy crust 5 km thick. Can protect life against magnetic fields.
- Evidence for deep (50 km!) liquid water ocean beneath crust-remains liquid from tidal forces from Jupiter
- Cracks and fissures on surface upwelling?

Mar 6, 2008 Astronomy 330 Spring 2008

Galileo

Mar 6, 2008 Astronomy 330 Spring 2008

Europa

- Young surface few craters
- Tidal forces pull and push the ice
 - Like Io, it probably has strong tidal forces.

Mar 6, 2008

Astronomy 330 Spring 2008

Ganymede

- Largest of the Galilean Moons
- Partly ancient surface, partly younger surface
 - Younger surfaces about the age of the Moon's maria
- Compared to our Moon:
 - 50% larger
 - 100% more massive
 - 40% less dense
- Interior more differentiated than Callisto, probably has an iron core
- May have a water ocean under surface.

Europa

- Life would have to be below the surface, around hydrothermal vents.
- Very encouraging, as early life on Earth, might have been formed around such vents.
- We don't how thick the ice is yet.
- Future missions, will have to employ smash and dive spacecraft.

Mar 6, 2008

Astronomy 330 Spring 2008

Callisto

- Compared to our Moon:
 - 40% larger
 - 50% more massive
 - 45% less dense
- Surface is made of "dirty ice"
- Interior is rocky, mixed with ice

Finding JIMO

Ì

- Jupiter Icy Moon Orbiter
 - To launch in 2015 or later
- Study Callisto, Ganymede, and Europa
 - Investigate makeup
 - Histories
 - Potential for sustaining life

Mar 6, 2008

Astronomy 330 Spring 2008

Equatorial radius 0.84 Jupiter Mass 0.30 Jupiter Density 0.52 Jupiter Almost as big as Jupiter, but Much less massive!

Saturn

- Named for the father of the Roman gods
- Saturn is very similar to Jupiter
 - Large planet
 - Mostly liquid hydrogen
 - Has a mini-solar system
 - At least 60 moons
 - Most are small

http://www.solarviews.com/cap /sat/saturn.htm

http://saturn.jpl.nasa.gov/cgibin/gs2.cgi?path=../multimedia/images/saturn/images/PIA05380.jpg&type=image

Missions to Saturn

- There have been 4 unmanned spacecraft missions to Saturn
- Pioneer 11
 - Flyby 1979
- Voyager 1
 - Flyby 1980
- Voyager 2
- Flyby 1981 Cassini-Huygens
 - Arrived 2004

Mar 6, 2008

Astronomy 330 Spring 2008

The Cassini Mission

- Launched on October 15th, 1997
- Arrived at Saturn on July 1st, 2004
- Will orbit Saturn for 4 years, making flybys of the planet, its rings, and some of its moons
- Contains 12 scientific instruments
- Also carries the Huygens probe, which was dropped onto Titan, Saturn's largest moon on Jan 2005. Remember?

Mar 6, 2008

Astronomy 330 Spring 2008

Saturn's Atmosphere

- Composition similar to Jupiter
 - Mostly hydrogen and helium
- Atmosphere more "spread out"
 - Less gravity
 - Contrast of cloud bands reduced
- Wind speeds fastest at the equator
 - 1000 km per hour!

Driving Saturn's Weather

• As on Jupiter, Saturn's internal heat drives

weather

- Saturn radiates 80% more heat than it receives from the Sun
- Like Jupiter, Saturn is still contracting!
- As is contracts, heat is produced
- As on Jupiter, storms are produced between cloud bands
 - No long lasting storm like the Great Red Spot, but hexagon cloud at pole has been stable for 20+ years.

Mar 6, 2008

Astronomy 330 Spring 2008

Mar 6, 2008

Saturn's Interior

Ì

- Similar structure to Jupiter's
 - But Saturn is less massive
 - The interior is less compressed
- Liquid metallic hydrogen creates a magnetic field
 - 30% weaker than Earth's

Saturn's Rings

- Two main rings
 - Several fainter rings
 - Each ring is divided into *ringlets*
- The rings are thin
 - Only a few tens of meters thick- razor thin!

Mar 6, 2008

Astronomy 330 Spring 2008

Mar 6, 2008

Astronomy 330 Spring 2008

Makeup of the Rings

- The rings of Saturn are **not** solid rings
 - Made of icy rocks
 - 1cm to 10m across
- New Cassini data shows ring particle size varies with distance from Saturn
 - Note the gap is filled with small particles

Saturn's Moons

- Saturn has a large number of moons
 - At least 60
- Only Titan is comparable to Jupiter's Galilean moons
- Smaller moons are mostly ice, some rock

Mar 6, 2008 Astronomy 330 Spring 2008 Mar 6, 2008 Astronomy 330 Spring 2008

Saturn's Odd Moons

- **Mimas** Crater two-thirds its own radius
- **Enceladus** Fresh ice surface, water volcanoes?
- **Hyperion** Irregularly shaped
- **Iapetus** Half its surface is 10x darker than the other half
- **Phoebe** Orbits Saturn backwards

Mar 6, 2008

stronomy 330 Spring 2008

Titan

- Saturn's largest moon– bigger than Mercury.
- 2nd largest moon in the solar system after Ganymede.
- Discovered in 1655 by Christiaan Huygens
- Only moon to have a dense atmosphere
- Dense nitrogen/methane atmosphere
 - Small greenhouse effect
 - 85% nitrogen
 - Much like ancient Earth!

Titan's atmosphere

Mar 6, 2008

Astronomy 330 Spring 2008

Titan

- Atmospheric pressure is 1.5 times Earth's
- Liquid/ice hydrocarbons?
- Organic compounds life?
 - Probably not too cold: 95 K
 - May be a "deep freeze" of the chemical composition of ancient Earth

Titan's atmosphere

Piercing the Smog

- Cassini has special infrared cameras to see through Titan's smog
- Green areas are water ice
- Yellow-orange areas are hydrocarbon ice
- White area is a methane cloud over the south pole

Mar 6, 2008 Astronomy 330 Spring 2008

Mapping Titan

http://esamultimedia.esa.int/multimedia/esc/esaspacecast001.mp4

Liquid Sea? Possible liquid methane

• N₂ came from ammonia (NH₃) – common in outer solar system

- Second most abundant component is methane (natural gas)
 - One option is $UV + methane \rightarrow hydrocarbons (e.g., ethane)$
 - Then, ethane condenses and rains down on Titan's surface

Mar 6, 2008

Astronomy 330 Spring 2008

http://antwrp.gsfc.nasa.gov/apod/ap070530.html

A Possible Past

- The probe floating in the ethane sea of Titan.
- Mountains in the distance.

http://saturn.jpl.nasa.gov/cgibin/gs2.cgi?path=../multimedia/images/artwork/images/

- No conclusive evidence exists for life in our solar system besides on Earth
- But, possibilities exist for life
 - Venus's clouds may have migrated life.
 - Mars may have some microbial history linked to water, and perhaps some subsurface life.
 - Jupiter's reducing atmosphere may harbor sinkers.
 - Europa's sub-crustal oceans may harbor life, even fish-like life.
 - Titan is still very interesting
 - Thick atmosphere
 - Reducing chemistry

No Intelligent Life

- We might find evidence of some sort of life in the next decade, but very unlikely to find complexity needed for intelligent and communicative life.
- Apparently in our system, Earth's conditions are necessary.
- Other planets may have microbial forms of life, and maybe complex fish-like organisms, but we don't expect communicative beings.

Mar 6, 2008

Astronomy 330 Spring 2008

How to search for life?

- Is is apparent that future missions need to land as near as possible to sites of subsurface water or other solvents.
- On Titan, what are the important tests for determining biological signatures of non-water life?
- What if the life is still in the protolife stage? Can we detect that?
- The boundary between chemical and biological processes is difficult to distinguish.

How to search for life?

- · How do we search for life in our Solar System and beyond?
- What test will indicate life exclusively?
- Remember the Viking problems on Mars.
 - Need flexibility to test interpretations.
- But, it is difficult to anticipate fully the planet conditions.

Mar 6, 2008

Decision Trees—Search for Life

- Wait for it to come to us via meteorites or comets.
- Robotic one-way investigations— Mars rovers.
- Fetch and return with samples.

Mar 6, 2008

http://www.ibiblio.org/wm/paint/auth/friedrich/tree.ip

Problems

Ì

- In the last 2 cases, we have the problem of contamination by Earth life.
- Organisms can live in Mars-like conditions on Earth.
- If some Earth life survives the space journey, it could colonize Mars, possibly destroy any Martian life. Think of Kudzu.
- Current missions must be sterilized.

http://www.hope.edu/academic/biology/faculty /evans/images/Angiosperms/CoreEudicots/Eur osidsI/Fabaceae/Kudzu.JPG

Mar 6, 2008

Mar 6, 2008

Astronomy 330 Spring 2008

Biomarkers: Looking at Earth.

- Ì
- Strong "red edge" from reflected light. Absorption from photosynthesis.
- Strong O₂. Keeping oxygen rich atmosphere requires some process. It should slowly combine with rocks.
- Strong methane. Should oxidize. Replenished by life.
- Strange radio emissions that could be intelligent life.

http://epod.usra.edu/archive/epodviewer.php3?oid=56256

Astronomy 330 Spring 2008

Biomarkers: How to look for extrasolar life.

- We need to decide how to search for biomarkers or chemical signatures of life.
- On Earth, methane and oxygen are indicators. They normally react. Something is keeping it out of equilibrium. Sort of like Venus disequilibrium.
- The Galileo spacecraft on its way out to Jupiter, turned and looked at the Earth.
- Did it detect life?

Mar 6, 2008

Astronomy 330 Spring 2008

Biomarkers: Looking at Earth.

- Recently, researchers have looked at the Earthshine from the moon.
- They agree with Galileo result. There is life on Earth
 - Water
 - Oxygen
 - Tentative detection of "red edge"

http://epod.usra.edu/archive/epodviewer.php3?oid=56256

Mar 6, 2008 Astronomy 330 Spring 2008

Summing Up

- Existence of organic molecules in space implies that amino acid complexity is common.
- Fact: On Earth polymers arose and evolved to life.
- Life it seems evolves naturally through a number of intermediate steps if conditions are right and $f_1 = 1$
- But how often are the conditions right?
- Nonetheless, even with only a vague notion of how life on Earth evolved, it seems that there are possible pathways that take the mysterious polymerization to transition to life steps.
- Still a number of questions:

Summing for f₁

- Is life a natural occurring consequence of the laws of nature?
- Will each planet from n_e outgas and produce water?
- Will it have a reducing atmosphere?
- Will it have the right energy sources to produce life's monomers?
- Monomers from space?
- Will polymerization occur?
- Are tides necessary to wash polymers back into liquid water?
- Will basic life occur? Protolife or life?
- Alternative life?
- Maybe the conditions that produced life on Earth are unusual or maybe common.
- That means f_1 can range from small numbers 0.0001 to 1.

Mar 6, 2008

Astronomy 330 Spring 2008

Mar 6, 2008