Astronomy 330

This class (Lecture 11):

Origins of Life
Yi Sun
Cheryl Cwik

Next Class:

Life Alternatives

Dale Sormaz

David Luedtke

HW 4 is due

Music: Bring me to Life – Evanescence

Feb 19, 2008 Astronomy 330 Spring 2008

HW #3

 Racquel & Allison & Tanya & Andrew & Dale http://www.stopabductions.com

Lunar Eclipse

- Lunar Eclipse on Wednesday night!
- Shadow of Earth on Full Moon.
 - Enter the penumbra at 1840
 - Enter the umbra at 1943
 - Enter totality at 2100
 - Exit totality at 2150
 - Exit umbra 2309
 - Exit penumbra at 0016

http://spacsun.rice.edu/~has/images/RB_Lunar-Eclipse-Phases-Center_10_29.jpg

Feb 19, 2008

Astronomy 330 Spring 2008

Presentations

• Yi Sun: <u>SETI</u>

• Cheryl Cwik: Interstellar Travel

Feb 19, 2008 Astronomy 330 Spring 2008 Feb 19, 2008 Astronomy 330 Spring 2008

Outline

- That's 0.67 Life-liking systems/year

Drake Equation

of
advanced
civilizations
we can
contact in
our Galaxy
today

Star formation rate

19

yr

stars/

Fraction of stars with planets

Earthlike planets per system

Fraction on which life arises

Fraction that evolve intelligence

Fraction that communicate

Lifetime of advanced civilizations

0.4 systems/ star

 1.25×0.07 = 0.0875planets/

system

life/ planet

intel / life

comm./ intel.

yrs/ comm.

Feb 19, 2008

Astronomy 220 Spring 2006

Feb 19, 2008

Feb 19, 2008

The beginning of life.

The Miller-Urey experiment

Astronomy 330 Spring 2008

Life

- Amino acids (20 flavors) for proteins
- The nucleotides: sugar, phosphates, and nitrogenous bases for **DNA/RNA**.
- How did they occur in a useful configuration so **fast** on the early Earth?
 - Remember the early Earth is not a fun place.
 - Poisonous gas atmosphere, hot, lots of meteorites, and cable TV is still 3.8 billion years away.

Synthesis of Monomers

Life arose under the following conditions

- Liquid water
- Some dry land
- Energy sources, including UV light, lightning, geothermal.
- A neutral or slightly reducing atmosphere (This is somewhat new). Remember no OXYGEN, mostly methane (CH₄) and CO_2 .

http://origins.inl.nasa.gov/habitable-planets/images/ra6-early-earth-th.ing http://www.pupress.princeton.edu/titles/6903.html

Reducing/Oxidizing?

- College Apparent Edmenton Values
 THE GAME OF LIFE

 James P. Steffman and William G. Bowen
- Reducing atmosphere has elements that give up electrons, e.g. hydrogen. A good example is the atmosphere of Jupiter: CH₄, NH₃.
- Oxidizing atmosphere has elements that *take* electrons, e.g. oxygen. A good example is the atmosphere of Mars or modern Earth.
- Neutral is neither.

http://origins.jpl.nasa.gov/habitable-planets/images/ra6-early-earth-th.jpg http://www.pupress.princeton.edu/titles/6903.html

Miller and Urey Experiment

- In 1953, Miller and Urey (UC) tried to duplicate conditions that they believed existed on the Early Earth— a heavily reducing atmosphere.
- They Mixed CH₄, H₂, and NH₃ gases in a flask for the atmosphere, and connected that to a flask with water for the oceans. A spark was used in the atmosphere flask to simulate lightning.
- They found interesting organic molecules in the "ocean".

http://www.vobs.at/bio/evol/e05-millerurey.htm

Feb 19, 2008

Astronomy 330 Spring 2008

Feb 19, 2008

Miller and Urey Experiment

- 4 amino acids were made: glycine, alanine, aspartic acid, and glutamic acid. Also some nucleotide bases and acetic acid
- It has been shown that <u>ALL</u> 20 amino acids needed for life can form in this way.
- Does not produce directly all monomers of nucleic acids, but intermediates were produced.

http://physicalsciences.ucsd.edu/news_articles/miller-urey

Miller and Urey Experiment

Astronomy 330 Spring 2008

http://www.ucsd.tv/miller-urey

Feb 19, 2008 Astronomy 330 Spring 2008 Feb 19, 2008 Astronomy 330 Spring 2008

Early Monomers

The Miller-Urey experiment legitimized the scientific study of life. The production of amino acids under the presumed conditions of the early Earth was exciting.

Feb 19, 2008

Astronomy 330 Spring 2008

Early Monomers

- We do not have a detailed theory of how all the monomers arose on the early Earth.
- General conclusion is that many of the monomers needed for life can be produced in a strongly reducing atmosphere, but that different environments are needed to get specific monomers.
- Don't forget that after the monomers are formed they MUST come together to form the polymers of life.

Early Monomers

- But the assumptions of the experiment have been questioned.
 - Early notions of methane-rich reducing atmosphere are wrong; Earth's early atmosphere was more likely CO₂,
 N₂, and H₂O vapor.
 - We still don't know early atmospheric composition well enough to make stronger case
 - We still don't know how this leads to DNA, the basis of all terrestrial life
- Recently, a group in Japan has showed that with enough energy, one can still get significant yields of amino acids in a mildly reducing environment.

Feb 19, 2008

Feb 19, 2008

Astronomy 330 Spring 2008

Other places

- Maybe if we require (still not sure) a strongly reducing environment, we have to look elsewhere.
 - Area around undersea hot vents, some of which have CH₄, NH₃, and other energy-rich molecules like hydrogen sulfide.
 - Interstellar space.

http://www.noaanews.noaa.gov/magazine/stories/mag114.htm http://www.chl.chalmers.se/~numa/photo/keyhole-small.jpg

with an In 1980 white Print 1 Ann Spec Image (47%) I

Astronomy 330 Spring 2008

The Underwater Vents

- Miles below the ocean surface, life lives on the edge! Places were sunlight never reaches.
- From regions of volcanic spreading of the floor, hydrothermal vents or <u>black smokers</u>, underwater geysers, spew mineral-rich superheated water.
- No plant life, but life thrives. So what does life live on?

Feb 19, 2008 Astronomy 330 Spring 2008

The Underwater Vents

- Chemical reactions or chemosynthesis to produce food instead of the Sun.
- Some life is bacteria, some eat the bacteria, some eat those that eat the bacteria, and some have bacteria inside them in a symbiotic relationship.
- http://www.xenon.com/ventsmovie.htm

Feb 19, 2008

Astronomy 330 Spring 2008