Astr	conomy 330	Final Papers			
	<u>This class (Lecture 26):</u> Space Travel David Zordan Sean Rohan <u>Next Class:</u> Visitations HW 11 is due! Note due on Tuesday!	 You must turn final paper in with rough draft. Unless you are happy with your as you final paper grade, then en the grade. Final paper is due on last day of 	h the graded rough draft grade nail me to keep class.		
Music: Space	e Oddity – David Bowie				
Nov 29, 2007	Astronomy 330 Fall 2007	Nov 29, 2007 Astronomy 330 Fall 2007			
Final		Presentatio	n Ì		
• December 12 th @1:30	0-4:30pm in this classroom	• David Zordan: L: When your T	<u>'ime is up</u>		
 Designed to be a 2-ish hour exam, but allowed 3 hours. Will probably consist of 40 multiple choice/ true-false questions (2 points each), 3 small essay questions (17 points each), and 2 large essay question (40 points each). 		• Sean Rohan: <u>Space Law</u>			
• A total of 210 points	graded out of 200 points.				
• A normal-sized sheet allowed.	of paper with notes on both sides is				
• Multiple-choice is he	avily weighted toward the last half of				

the course.Bring a calculator for easy math.

Outline

Astronomy 330 Fall 2007

Shuttle Shucks

- Rockets: how to get the most bang for the buck.
- Some examples of possible rocket ships ٠

Shuttle Links

Nov 29, 2007

Astronomy 330 Fall 2007

Fuel Efficiency

- To really think about interstellar travel or even going to Mars, we need the most bounce for the ounce:
 - Need to carry (probably MUCH) fuel
 - Must be very thrifty about efficiency
 - In other words, if we are going to carry fuel mass on a ship, we had better get as much energy from it as possible!

Nov 29, 2007

Getting Ready

E=mc²

- Can relate mass to energy, i.e. the most energy one can get from a piece of mass, no matter what you do
- A useful unit of mass/energy in particle physics is the "*electron volt*" or "eV"
- A proton "weighs" about 1 billion electron volts: 1GeV
- So a H atom is about 1 GeV of mass/energy

tp://www.owlnet.rice.edu/~spac205/E

Nov 29, 2007

Astronomy 330 Fall 2007

Project Orion

- A spacecraft powered by nuclear bombs- nuclear fission.
- Idea was sponsored by USAF in 1958
- Physicist Freeman Dyson took a year off from Princeton to work on idea
- Sounds crazy now... but a real project

Fuel Efficiency

- <u>Chemical fuel</u> (like burning wood or rocket fuel) one only gets a few eV of energy from each atom or molecule
 - In other words, only about 1 billionth of the total mass of the chemical agents gets converted into energy!
- <u>Nuclear fission</u> gives off a few MeV for each nucleus that fissions:
 - So, about one thousandth of the total mass gets converted into energy!
 - Better than chemical by a factor of a million!
- <u>Nuclear fusion</u> reaction can produce about 10MeV from a light nucleus
 - So, the efficiency is about one hundredth!
 - Getting better!

Nov 29, 2007

Astronomy 330 Fall 2007

Project Orion

- You dropped hydrogen bombs wrapped in a hydrogen rich jacket out the rear of a massive plate.
- Detonate 60 meters away, and ride the blast-- an atomic pogo stick.
- 0.1 kton bomb every second for take off, eventually tapering to one 20 kton bomb every 10 sec.

Astronomy 330 Fall 2007

1101 27, 2001

ASUODOD 3 30 1 all 2007

Project Orion

- s.i. theoretically around 10,000 to one million seconds
- Limited to about 0.01c.
- But, it is a "dirty" propulsion system.
- A 1963 treaty banned nuclear tests in the atmosphere, spelled the end of "Orion".
- Still argued to be the best rocket we could build today.

- Continuation/extension of Orion
- British Interplanetary Society project (1973-1978 planned)
- A robotic fly-by probe to Barnard's Star
 - 2nd closest star system to Earth, 6 lyr away
 - In human lifetime scale (chose 50 yrs)
 - Needs to reach 12% c.
- Idea was to also use nuclear nuland nower but fusion

		puised power, but fusion.				
		http://www.daviddarling.info/encyclopedia/O/OrionProj.html				http://www.daviddarling.info/encyclopedia/D/Daedalus.html
Nov 29, 2007	Astronomy 330 Fall 200	7	Nov 29, 2007		Astronomy 330 Fall 200	7
Pr	oject Dae	dalus Ì	Res .	Deuterium-	Tritium Fusio	n Reaction
 Good example travel with for technology. Use fusion, lik But, we have the energy efficient hydrogen → h But there's a p 	e of interstellar reseeable te the stars. to use the more nt part of relium. problem.			Deuterium D		Tritium T Bad Neutron! The fast neutrons are hard to stop, requires too much shielding. And can create extra reactions. Neutron n
Nov 29, 2007	Astronomy 330 Fall 200	nttp://www.daviddarling.into/encyclopedia/D/Daedalus.html	Nov 29, 200'	ENE	RGY MULTIPLI About 450:1	

Nov 29, 2007

Nov 29, 200'

Project Daedalus

• Instead Daedalus would use:

 $d + {}^{3}He \rightarrow {}^{4}He + p$

- The by-products are normal helium and a proton.
- Both are positively charges and can be deflected with magnetic fields into an exhaust.
- Reasonably efficient, around 5 MeV.
- 1 MINOR problem. ³He is very rare on Earth.
- Could be collected from the moon or Jupiter's atmosphere.

Project Daedalus

- Daedalus would accelerate for 4 years, then coast for 50 years to reach Barnard's star.
- At blastoff the mass would be 54,000 tons, of which 50,000 would be fuel.
- That's an $R_M = 12$.
- The fuel would be in pellets that enter the reaction chamber 250/sec.
- Sophisticated robots needed for repair.

http://www.daviddarling.info/encyclopedia/D/Daedalus.html

Nov 29, 2007

Astronomy 330 Fall 2007

Project Daedalus

- For dust erosion at 0.12c, requires a beryllium erosion shield 7mm thick and 55 meters in diameter.
- Once it reached Barnard's star, it would disperse science payload that would study the system.
- Would transmit back to Earth for 6-9 years.
- So does not require a return trip.

http://www.daviddarling.info/encyclopedia/D/Daedalus.html

Astronomy 330 Fall 2007

Project Daedalus

- ·
- Still requires more technology.
- How to get the deuterium and ³He close enough to fuse in the first place.
- This requires a hot, compressed collection of nuclei that must be confined for long enough to get energy out
 - It's like "herding cats"

Fusion Rockets

- We are still not there.
- Fusion is not viable on the ground or in rockets at this time.
- Techniques are being worked on, but it can easily take decades before the technology is feasible.

Ion Drives

- These are not science fiction.
- A propellant system: "stuff" is thrown backwards propelling the ship forwards.
- They eject a beam of charged atoms out the back, pushing the rocket forward
 - Kind of like sitting on a bike and propelling yourself by pointing a hairdryer backwards

Astronomy 330 Fall 2007

Nov 29, 2007

Astronomy 330 Fall 2007

Ion Drive

- First successful used in Deep Space 1, which took the closest images of a comet nucleus (Comet Borrelly).
- The engine worked by ionizing xenon atoms, then expelling them out the back with strong electric fields.
- The only waste is the propellant itself, which can be a harmless gas like xenon.
- But, requires energy input to power electric field which pushes the ions out the back
 - Solar cells usually provide power.

DS1

- DS1 only used 81.5 kg of xenon. ٠
- Thrust of engine is only about as strong as the weight of a piece of paper in your hand!
 - If you keep pushing lightly, you will keep accelerating, so after time you can build up speed
 - DS1 eventually reached velocity of 4.5 km/s (10,000 mph!)
 - Remember fastest space vehicle is Pioneer, which is still going about 12km/s
- Not useful for missions that need quick acceleration
- But, more efficient than chemical ٠
 - Can achieve 10 times greater velocity than chemical!

http://nmp.ipl.nasa.gov/ds1/img/98pc1191.gi

Astronomy 330 Fall 2007

http://antwrp.gsfc.nasa.gov/apod/ap030720.html

The New Dawn

- Propelled by three DS1 heritage xenon ion thrusters (firing only one at a time).
- s.i. = 3100 s
- Thrust of 90 mN (weight of a sheet of paper on Earth)
- 0-60 mphs in 4 days!
- In 5 years = 23,000 mph!
- Powered by a 10 kW solar array
- Each engine the size of a basketball (weighs 20lbs)

The New Dawn

- To get to Vesta will use 275 kg Xe
- To get to Ceres will use another 110 kg Xe
- NASA's first purely exploratory mission to use ion propulsion engines

Nov 29, 2007

Astronomy 330 Fall 2007

Our Problem

- For interstellar travel with any propellant, you must carry with you the stuff that you eventually shoot out the back
 - Fine for Saturn V rocket and "short" lunar missions
 - Bad for interstellar travel
 - Maybe even prohibitive
- But, it is unlikely that the methods discussed up to now will enable us to reach the stars in any significant manner.
- It is unlikely, therefore, that ET civilizations would use these methods
- We may do better, though...with the biggest bang for the buck.

Nov 29, 2007

Astronomy 330 Fall 2007

Antimatter

- The most energy you can get from a hunk of mass is extracted not by
 - Chemical Burning
 - Nuclear fission or fusion
 - Pushing it in an ion drive
- The most efficient way to get energy from mass is to annihilate it!
- When they annihilate all of their mass is turned into energy (E=mc²), eventually photons.
- $V_{ex} = c$

Nov 29, 2007

Anti-(Anti-matter)

- But, antimatter does not normally exist.
- We have to make it.
- We can make small quantities in giant particle accelerators, but total amount ever made is on order of a few nanograms.
- Would take 200 million years at current facilities to make 1kg!

Anti-Hydrogen from CERN.

http://news.bbc.co.uk/2/hi/science/nature/2266503.stn

Anti-(Anti-matter)

- The amount of antimatter made in Illinois at Fermi-Lab in 1 day can provide energy to light a 100 W light bulb for ~3 seconds. If 100% efficient.
- And right now it takes about 10 billion times more energy to make antiprotons than you get from their annihilations.

http://news.bbc.co.uk/2/hi/science/nature/2266503.stm

Nov 29, 2007

Astronomy 330 Fall 2007

Nonetheless

Propulsion

Chemical Electromagnetic Nuclear Fission Nuclear Fusion Antimatter <u>Specific Impulse</u> [sec] 200 - 450 600 - 3000 500 - 3000 5000 - 10000 1000 - 100000

- Antimatter has potential to be about 1000 times more powerful than chemical combustion propulsion
- Antimatter propulsion has potential to be about 10 times more powerful than fusion

Nov 29, 2007

Astronomy 330 Fall 2007

Storage Issues

- Antimatter can be like a battery- storing energy.
- But antimatter *must* not touch matter!
- So, you have to store it without touching it
- Can be done by making electromagnetic "bottle" that confines particles with electric and magnetic force fields
 - "Penning trap"

http://www.engr.psu.edu/antimatter/

Astronomy 330 Fall 2007

Nov 29, 2007

ICAN

- Ion Compressed Antimatter Nuclear – Designed at Penn State for Mars Mission
- Mixture of antimatter and fusion pellets.

Lose the Fuel, Fool

- What if we didn't have to carry all the fuel?
- One option is the Bussard ramjet.
- The spacecraft collects its own fuel as it moves forward.
- But, in interstellar space there is only 1 atom/cm3.

Interstellar Problem

- Still for interstellar trips, we got a problem with carrying around the fuel.
- Edward Purcell thought about antimatter interstellar travel and found even that to be lacking!
- The lightest mass U.S. manned spacecraft was the Mercury capsule– the "Liberty Bell". It weighed only 2836 pounds (about 1300kg) and launched on July 21, 1961.
- It would still take over *50 million kg* of antimatter fuel to get this tin can to the nearest star <u>and back</u>.

http://lsda.jsc.nasa.gov/images/libertybell.jpg http://www.craftygal.com/archives/september/table0900.htm

Nov 29, 2007

Astronomy 330 Fall 2007

Lose the Fuel, Fool

- The scoop would have to be 4000 km in diameter (size of US).
- Or magnetic fields to collect the material.
- But would mostly be low-grade hydrogen fuel, so it is a technological step ahead of what we already discussed.
- Could reach speeds close to 0.99c.

http://www.sternenreise.de/weltraum/antrieb/bussard.htm

Light Sails

- Imagine a space sailboat but with photons of light hitting the sails and pushing it forward.
- No need to carry propellant, distant laser could be used to illuminate sails.
- Photons have energy but no rest mass.
- But, they do carry momentum!
 - It is related to the energy such that p = E / c
- So, such a craft is not propelled by solar winds!
- But by light bouncing off, like a mirror.

Nov 29, 2007

COSMOS 1

- First solar sail spacecraft (and private!) launched from a Russian nuclear submarine on June 21, 2005!
- Unfortunately, the first stage of the Volna never ٠ completed its scheduled burn, and the spacecraft did not enter orbit.
- Built in Russia at Babakin Space Center
- Had 8, 15m sails
 - 100kg payload (small, but first step!)
- The planetary society is going to try again, if they can raise the money.

Nov 29, 2007

Astronomy 330 Fall 2007

Astronomy 330 Fall 2007

- It would take about 1,000 years for a solar sail to reach one-tenth the speed of light, even with light shining on it continuously.
- It will take advanced sails plus a laser power source in space that can operate over interstellar distances to reach one-tenth the speed of light in less than 100 years.
- So probably not useful for interstellar travel.

Warp Drives

- Again, science fiction is • influencing science.
- Due to great distance between the stars and the speed limit of c, sci-fi had to resort to "Warp Drive" that allows faster-than-light speeds.
- Currently, this is **impossible**. ٠
- It is speculation that requires a revolution in physics
 - It is science fiction!
- But, we have been surprised • before
- Unfortunately new physics usually adds constraints not removes them.

http://www.filmjerk.com/images/warp.gif

