Astronomy 330

HW #3

This class (Lecture 16):
Biological Evolution
Time 4 by No ffice

Timothy Noffke Se Hee Jang

Next Class:

Biological Evolution Jennifer Christie Jennifer Wojcicki

Music: Spaceboy - Smashing Pumpkins

Oct 18, 2007 Astronomy 330 Fall 2007

• Mike Murphy:

http://www.geocities.com/area51/orion/3781/etreality.htm

• Danielle Campanella:

http://news.nationalgeographic.com/news/2003/11/1114_0 31114 setisearch.html

• Nick Leners:

http://www.dailymail.co.uk/pages/live/articles/news/news.html?in article id=470579&in page id=1770

Oct 18, 2007

Astronomy 330 Fall 2007

Presentations

• Timothy Noffke: Archaeoastronomy

• Se Hee Jang: ETs, so Far?

Outline

- Two types of cell life: Eukaryotes and Prokaryotes.
- All life can be divided into 3 types:
 - Bacteria
 - Archaea
 - Eukarya

Oct 18, 2007 Astronomy 330 Fall 2007 Oct 18, 2007 Astronomy 330 Fall 2007

Biomarkers: How to look for extrasolar life.

- We need to decide how to search for biomarkers or chemical signatures of life.
- On Earth, methane and oxygen are indicators. They normally react. Something is keeping it out of equilibrium. Sort of like Venus disequilibrium.
- The Galileo spacecraft on its way out to Jupiter, turned and looked at the Earth
- Did it detect life?

Oct 18, 2007

Astronomy 330 Fall 2007

Biomarkers: Looking at Earth.

- Strong "red edge" from reflected light. Absorption from photosynthesis.
- Strong O₂. Keeping oxygen rich atmosphere requires some process. It should slowly combine with rocks.
- Strong methane. Should oxidize. Replenished by life.
- Strange radio emissions that could be intelligent life.
- Recently, researchers have looked at the Earthshine from the moon.
- They agree with Galileo result. There is life on Earth.
 - Water
 - Oxygen
 - Tentative detection of "red edge"

http://epod.usra.edu/archive/epodviewer.php3?oid=56256

Oct 18, 2007

Astronomy 330 Fall 2007

Drake Equation

advanced civilizations we can contact in our Galaxy today

Star formation rate

15

stars/

0.5

star

systems/

of stars with planets Earthlike planets per system

 2.7×0.134

planets/

system

= 0.36

Fraction on which life arises

0.95

life/

planet

Fraction that evolve intelligence

intel./

life

Fraction Lifetime of advanced communcivilizations icate

intel.

vrs/

comm./ comm.

Evolution of Intelligence

- First, we will examine the diversity of life; the fossil record shows a huge diversity with time.
- Organisms range from bacteria to humans.
- 1.8 x 10⁶ known species
 - Insects account for most (1.0 x 10⁶)
 - Estimated that only 10% are known
 - Bacteria are hard to classifyonly 7700 species so far.

Oct 18, 2007

Astronomy 330 Fall 2007

http://www.amonline.net.au/insects/images/site/insect1.jps

Evolution of Intelligence

Life

• Remember that all of these organisms use nearly identical genetic codes, so life descended from a common ancestor.

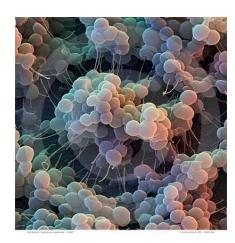
• Primary challenge of biology is to explain how life from a single type of organism, diversified so

• Evolution is the primary concept.

much.

Astronomy 330 Fall 2007

If we took all the biomass of all the animals, and all the biomass of all the viruses, bacteria, protozoa, and fungi- who weighs more?


Oct 18, 2007

Astronomy 330 Fall 2007

Bacteria

- 40 million bacterial cells in a gram of soil
- 1 million bacterial cells in a milliliter of fresh water
- Something like five nonillion (5 \times 10³⁰) bacteria in the world.

http://www.scharfphoto.com/fine_art_prints/archives/000608.php

You or not you?

- This is more non-you cells in your body than youcells in your body!
 - You are outnumbered 10 to 1!
 - Mostly on your skin and in your digestive track

Bacteria under a toe-nail

http://news.nationalgeographic.com/news/2007/02/070206-skin

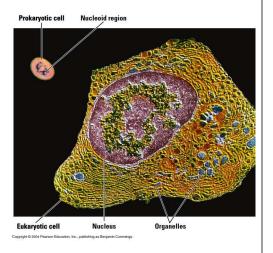
Astronomy 330 Fall 2007

Oct 18, 2007

Astronomy 330 Fall 2007

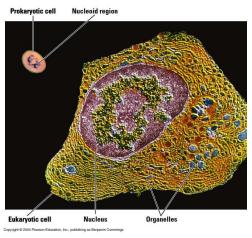
Oct 18, 2007

Classification of Life



Classification of Life

1. Prokaryotes


- No cell nucleus- DNA floating around
- Always single-cell creatures like bacterium
- Came first
- Outnumber and outweigh the second class (eukaryotes)

Astronomy 330 Fall 2007

2. Eukaryotes

- Have a cell nucleus, a membrane to protect the DNA
- Basis of all multi-cell creatures
- Also some single-cell creatures like amoebas.
- DNA arranged into chromosomes in nucleus– 23 pairs for humans.

Oct 18, 2007

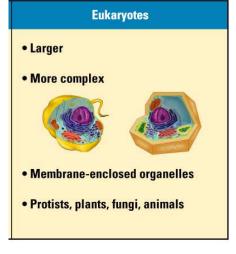
Astronomy 330 Fall 2007

Prokaryotes

Divided into 2 domains:

- 1. Eubacteria or "true" bacteria
- 2. Archaea

Oct 18, 2007


- 20% of the world's biomass.
- Thought to be the oldest surviving organisms.
- Often found in harsh environments: hot springs, undersea vents, salty seashores, etc, which were probably more common on the early Earth.
- Some evidence that ancient organisms were heat-lovers (maybe)

Smaller Simpler Most do not have membrane-enclosed organelles Bacteria and archaea

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Eukaryotes

• All animals, plants, and fungi.



Oct 18, 2007 Astronomy 330 Fall 2007 Oct 18, 2007 Astronomy 330 Fall 2007

3 Domains of Life

Ì

- Genetically speaking, Archaea and Eukarya are more similar to one another than are Bacteria and Archaea
- Implies that Archaea and Bacteria split and then all Eukarya split from Archaea
- A major implication for the evolution of life on Earth

Oct 18, 2007

Astronomy 330 Fall 2007

Genetic Relations

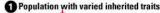
- This is a major change from the old methods of assigning groups based on outward form and anatomy.
- Instead based on studies of the genetic code.
- Surprise: Human and chimpanzees share about 99% of the same DNA, and about 97% with mice.
- Surprise: 2 species of fruit fly look very much alike, but only share about 25%.
 Some of this differences is due to *junk* DNA.

http://www.uglybug.org/index00.shtm

http://www.pritchettcartoons.com/fruitfly.htm

Changes?

- Today's view: evolution is the most important and unifying property of life.
- <u>Anaximander</u> (c. 610–547 BC): life arose in water and gradually became more complex
- Empedocles (c. 492–432 BC): survival of the fittest (but, "a good idea stated within an insufficient theoretical frame loses its explanatory power and is forgotten" by Hans Reichenbach)
- <u>Aristotle</u> (384–322 BC): species are fixed and independent of each other → evolution discarded for 2000 years
- Fossil record: slowly broke down the Aristotelian theory


For the Species Survival

Astronomy 330 Fall 2007

Oct 18, 2007

2 Elimination of individuals with certain traits

Reproduction of survivors

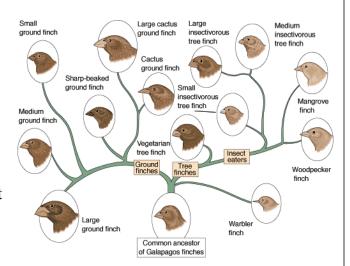
Oct 18, 2007

- Darwin (1809–1882) & Malthus (1766-1834):
 - Populations can grow faster than food sources can support them.
 - Creates a struggle for survival that can wipe out competitors.
 - Individual variations has advantages or disadvantages in the struggle for survival
 - Natural selection can create unequal reproductive success

4 Increasing frequency of traits that enhance survival and reproductive success

Copyright © 2001 by Benjamin Cummings, an imprint of Addison Wesley.

Astronomy 330 Fall 2007


Astronomy 330 Fall 2007

Oct 18, 2007

Filling the Niche with Finch

- Other Evidence:
 - Adapted species in the Galápagos Islands, in particular finches
 - Artificial breeding of house/farm animals and vegetables
- DNA is really the mechanism of natural selection, but evolution requires both heredity and environment

Oct 18, 2007 Astronomy 330 Fall 2007

Mutant Sex

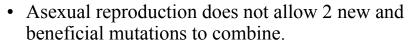
• Mutations from changes in the bases of DNA.

• Usually copying errors, but also radiation— radioactivity, cosmic rays, chemical agents, or UV light.

• About 3 mutations per person per generation.

 Most mutations are neutral, changes in the *junk* DNA.

• Why is sex important to this class?


http://www.mutantx.net/features/press_vw_sexy.htm

Astronomy 330 Fall 2007

Mutant Sex

 Sexual reproduction leads to greater genetic diversity— a difference between prokaryotes and eukaryotes?

- Blackberries have not changed much in 10 millions years, but sexual plants have produced: raspberries, thimbleberries, cloudberries, dewberries, etc.
- Sex is useful in the process, but the mutations are still key.

http://www.alcasoft.com/arkansas/blackberry.html

Does it take a long time?

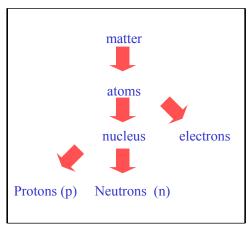
Cabbage, kale, kohlrabi, brussels sprouts, cauliflower and broccoli have same common ancestor—wild mustard. All bred by humans on a very short time scale.

This is selective breeding, but still the potential is in the DNA.

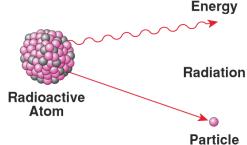
Oct 18, 2007

Or domestic lap dogs from wolves in about 5000 years.

Astronomy 330 Fall 2007


Oct 18, 2007

onomy 330 Fall 2007


Radioactive Dating

Recall:

- Most atomic nuclei stable
- But some nuclei are *unstable*,
 - \Rightarrow decay to new nucleus "radioactive"

Oct 18, 2007

Oct 18, 2007

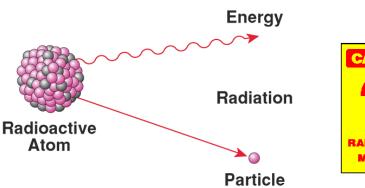
The Law of Radioactive Decay

As radioactive "parent" decays, the number of decay product or "daughters" increases

Decay is a good "clock"

- Each radioactive species has different "tick"
- Rate= "half-life"
- Exponential decay from original population of n₀

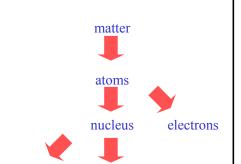
Decay Rule Start out with N parents, 0 daughters


Time t since start	# parents	# daughters
0	N	0
t _{1/2}	½ N = half as much	½ N have appeared
2t _{1/2}	1/4 N = half again as much	³/ ₄ N
3t _{1/2}	1/8 N	7/8 N
30t _{1/2}	About N/109	99.9999999% N

Oct 18, 2007

Astronomy 330 Fall 2007

Radioactive Decay Examples



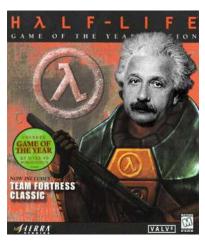
Radioactive Dating

Neutrons (n)

Example 1: Carbon C=6p

- Carbon-12: 6p+6n, stable
- Carbon-14: 6p + 8n, unstable (1/2 life of 5730 years)
- ¹⁴C→¹⁴N (nitrogen)
- Nitrogen-14: 7p + 7n, stable

Example 2: Uranium U=92p


• Uranium-238: 92 p + 146 n (1/2 life of 4.5 billion years)

²³⁸U → chain of decays→²⁰⁶Pb (lead)

Protons (p)

Carbon-14

- Cosmic rays from space are constantly hitting the Earth.
- React with ¹⁴N in atmosphere to create ¹⁴C.
- Decays back to ¹⁴N with half life of 5730 years.
- But, there is an equilibrium in abundance
- In atmosphere, the ¹⁴C is mostly in ¹⁴CO².

http://bbspot.com/Images/News_Features/2003/12/half-life.jpg

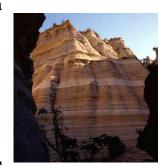
Carbon-14

- Plants take in ¹⁴CO² with the ¹²CO² and other animals eat the plants.
- So, every living creature has a equilibrium ratio of $^{14}\text{CO}^{2/12}\text{CO}^{2}$
- When the organism dies, the ¹⁴C decays to ¹⁴N. By measuring how much ¹⁴C remains, you can date the fossil.
- This works well to about 60,000 years.
 - Viking remains in Newfoundland- 500 yrs before Columbus.
 - Shroud of Turin to 1330 AD

http://web.mit.edu/smcguire/www/newfoundland/newf16.html

Oct 18, 2007

Astronomy 330 Fall 2007


Oct 18, 2007

Astronomy 330 Fall 2007

Dating Rocks

- First you ask them out?
- No, you need a radioactive decay that has a longer half-life than ¹⁴C.
- Potassium-argon
 - ⁴⁰K decays to ⁴⁰Ar with a 1200 Myr half-life.
- · Uranium-lead
 - ²³⁵U to ²⁰⁷Pb with 700 Myr half-life.
- But these only work with volcanic layers.
- So, the ages of fossils are interpolated from ages of volcanic layers above and below them.

Era	Period	Myr Ago	Life Forms	Events
Cenozoic	Quaternary	2	H. Sapiens	Ice ages
	Tertiary	65	Primates	Extinction of Dinosaurs
Mesozoic	Cretaceous	136	Birds	S. Atlantic open to 1900 miles
	Jurassic	190		N. Atlantic open to 600 miles
	Triassic	225	Mammals	Continental drift
Paleozoic	Permian	280	Reptiles	Pangaea breaks up
	Carboniferous	345	Amphibians	Formation of coal
	Devonian	395	Insects	
	Silurian	430	Land Plants	
	Ordovician	500	Fish	
	Cambrian	543	Trilobites	
Precambrian		545	Small Shelly Fossils	
		580	Ediacarans	
		600-800	Multicellular life	Snowball Earth episodes

Astronomy 330 Fall 2007

Increase of Complexity

- Last table showed only the last 800 Myrs.
- More complex and intelligent organisms appeared later on.
- For many years it was thought that life originated in the Cambrian era, then Precambrian fossils were found.
- Then, it was realized that there were single-celled fossils that required microscopes.

Astronomy 330 Fall 2007 Oct 18, 2007

-

Concepts

- As prokaryotes are simpler than eukaryotes, we expect them to exist first.
- Identifying fossil prokaryotes is difficult: they're tiny!
- But there is enough evidence that before 1500-2000 Myrs ago there are only prokaryotes fossils.
- Note: the oldest fossils (3800 Myrs ago) are under dispute, but the 2800 Myr old fossils are universally accepted.
- All of the macroscopic life only arose in the last 600 Myrs– 1/6th of the history of life on Earth.

http://www.earth.ox.ac.uk/research/geobiology/geobiology.htm

Making Oxygen!

The early prokaryotes played a crucial role for life on Earth by producing oxygen through photosynthesis.

Myr Ago

Now

1000

2000

3000

4000

Era

Cenozoic Mesozoic Paleozoic

Precambrian

Protozoic

Archean

Hadean

- Cyanobacteria (was called blue-green algae) changed the world!
- Lived in colonies that formed mats or films, growing into large structures called stromatolites.
- Still around, but much more common before 700 Myrs ago.

Event

Macroscopic life/Snowball

Earth

Worm tracks

Multicellular algae Eukaryotes certain

Sexual reproduction

Eukaryotes possible

Oxygen-rich atmosphere Snowball Earth

Formation of continents

Life begins?

Formation of Oceans Bombardment decreases Frequent impacts

Earth formed

Making Oxygen!

- Oxygen was new and important step in intelligence
- It allowed a new energy extraction method
 - Aerobic (using oxygen) metabolism
 - More complex life.
 - Created ozone layer (dry land now an option for life on Earth).

Oct 18, 2007

Astronomy 330 Fall 2007

Summary

- This following slides are from: http://www.udayton.edu/~INSS/
- Nice timeline of life on Earth.

- Would evolution on other planets have a similar timescale?
- Evolution is not a deterministic process.
- Selection seems to be mostly luck, rather than adaptation.
- On the other hand, many traits have developed in several lineages— warm blood and eyes.
- Some say that intelligence seems to increase in many lineages, so it is likely that if live exists then intelligent life exists.
- On the other hand, the plant kingdom never developed neurons.

Oct 18, 2007

Astronomy 330 Fall 2007

