Astronomy 230 Section 1– MWF 1400-1450 106 B6 Eng Hall

Outline

• Build up proteins (structural and enzymes) with amino acids from the commands of the amino acids. These are

This Class (Lecture 12):

Nucleic Acids

Some Oral Presentation on Feb 25th and 27th!

Next Class:

Killer Supernovae!

Steven Andrews Mikey Nickolaou Jon Hartmann

Brian Figenholtz Jon Huff Rachel Pidu

Astronomy 230 Spring 2004

Feb 20, 2004

DNA/RNA. What are they?How do they transfer information?

• Hooking up amino acids into longer chains.

004

Amino Acids

the essentials for life.

Feb 20, 2004

Molecular Basis of Life

- Great diversity of Life on Earth, but still it is 70% water and 24% four large molecules:
 - Proteins
 - Nucleic Acids
 - Lipids
 - Carbohydrates
- Not completely true. The simplest life, viruses, can have a single molecule of nucleic acid surrounded by a protein coating.

Lipids and Carbohydrates

Astronomy 230 Spring 2004

- Lipids are almost entirely composed of carbon and hydrogen with some oxygen.
- Lipids are essential for cell membranes.
- Carbohydrates are comprised of sugar molecules.
- Carbohydrates are used for energy storage of cells.
- But we will concentrate on proteins and nucleic acids as crucial for life.
- They are enough for viruses, and there may have been protolife that was similar?

Astronomy 230 Spring 2004

Astronomy 230 Spring 2004

Monomers and Polymers

- All of the fundamental chemicals of life are organic polymers
 - A monomer is a small molecule (like carbon bonds we have seen).
 - A polymer is a number of monomers joined together to form larger, more complex molecules.
 - Polymers are nice for life, as they can form complex and repetitive sequences

Astronomy 230 Spring 2004

Feb 20, 2004

How is Life Put Together?

- Living things are not just bags of large molecules and polymers mixed in a big soup
 - Living things have structure
 - Plants, animals have different parts
 - Skin, Hair, Leaves, Hearts, etc.

How do these structures relate to the complex organic polymers and DNA?

Proteins and Nucleic Acids

- Proteins are either structural elements or catalyze reactions (enzymes).
- Nucleic acids carry the genetic information—Replication of nucleic acid is crucial to reproduction of organism.
- Both are made of polymers.
- Can form complex, repetitive sequences.
- The order of the monomers determines the function of the polymers.
- Monomers are the letters and words in the molecular basis of life, and polymers are the messages.

Astronor

Astronomy 230 Spring 2004

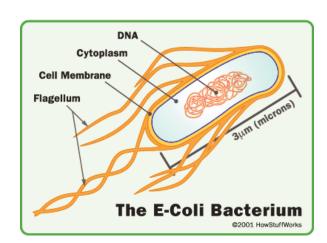
DNA Based Life

- All life is based on DNA. What does this mean?
 - The basic reproducible unit of all living organisms is centered around the complex DNA molecule.
 - DNA lives in cells
 - Except in viruses which are basically pure DNA
 - Cells of different types form different parts of each organism
 - Heart cells different from blood cells.
 - Leaf cells different from root cells.

Astronomy 230 Spring 2004

Astronomy 230 Spring 2004

Cells

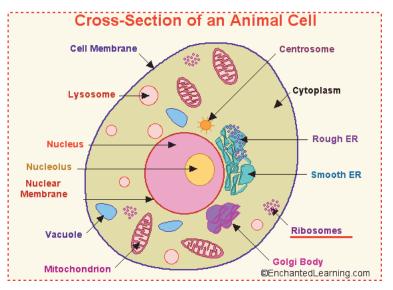

Bacteria Cells

- The cell function directly relates to a different organic polymer:
 - Proteins: Polymers of amino acid monomers that form the structural components of the cell or form enzymes that do all the real chemical work inside the cell.
 - <u>DNA</u>: The genetic coding molecules that controls enzyme and cell reproduction
 - Sugars: The energy source of cells

Astronomy 230 Spring 2004

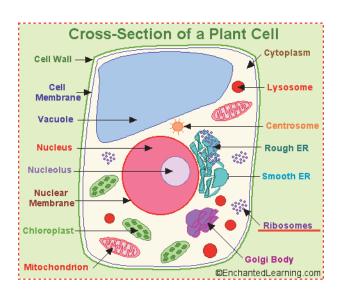
 Simplest cell that exists today.

- · Completely selfcontained organism.
- Human cells are much more complicated.
- 1 trillion cells in a typical human and they're usually 10 microns in diameter.



Feb 20, 2004

Astronomy 230 Spring 2004


Animal Cells

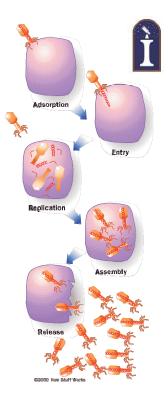
Plant Cells

Astronomy 230 Spring 2004

Astronomy 230 Spring 2004

Cell Variation

- Bacterial cells lack a nuclear membrane enclosing the cell's nucleus
- Animal cells have a nuclear membrane but lack a distinct cell wall
- Plant cells have both a nuclear membrane and a cell wall


Feb 20, 2004 Astronomy 230 Spring 2004

Proteins

- Proteins are large, very complex, and very numerous.
- All proteins in living organisms are made from combinations of 20 types of amino acids (about 100 available though).
- Example: Enzymes are made up of 100s to 1000s of those 20, with a particular sequence and shape.
 - This gives 20¹⁰⁰⁺ possible combinations
 - How many 100 character sequence can you form from the alphabet?
- BUT, only about 10,000 proteins are used.
- Note, the human body is about 20% protein.

- Straddles between the living and non-living
- The protein protects the virus until it enters a living cell, where the nucleic acid is released.
- Using the cell's machinery, the nucleic acid reproduces itself.
- They are all parasites, so thought to be from free-living organisms and not descendents of early life.

Astronomy 230 Spring 2004

Feb 20, 2004

Protein Desert

- The fact that only 10,000 of the billions+ of proteins are used, suggests that life is a little picky.
- Only certain combinations seem to work?
- Does this mean that ET life would find the same useful permutations as Earth life found.
 - Many options were available
 - But, only a small fraction actually worked?

A Type of Protein: Enzymes

- Ì
- All of the day-to-day work of life is being done by enzymes. Enzymes are little chemical-reaction machines.
- The purpose of an enzyme is to allow the cell to carry out chemical reactions very quickly.
- These reactions allow the cell to build things or take things apart as needed—grow and reproduce.
- E. coli has about 1,000 different types of enzymes floating around in it at any given time.
- To understand enzymes is to understand cells. To understand cells is to understand life on Earth.
- Maybe similar to life in space?
- Enzymes are made from 3-D structures of amino acids (or proteins) orchestrated by the DNA.

Feb 20, 2004

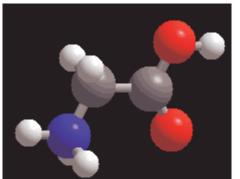
Astronomy 230 Spring 2004

Amino Acids

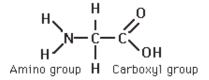
side chain

- Are the monomers from which proteins (polymers) are made—building blocks.
- Combinations of the amino acids make the millions of proteins needed—only 20 amino acids.
- The order of the amino acids determine the formed protein.
- Carboxylic acid group
- Amino group

• Side group R gives unique characteristics


H₂N—C —COOH

Feb 20, 2004


Astronomy 250 Spring 2004

Glycine

- Simplest amino acid. Just an H in the R position.
- Main ingredients are HOCN- other amino acids contain Sulfur (S) as well.

Getting Hooked Up

- Amino acids are monomers
- Proteins are polymers of amino acids of a certain type. A number of specific amino acids "hook up" to form a specific protein.
- As a chain grows, there is always a hook (the amino group) on one end and an eye (the carboxyl group) on the other.
- Really a peptide bond.

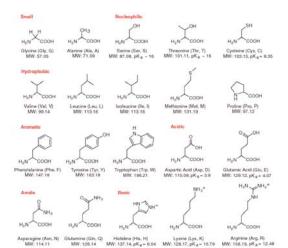


Astronomy 230 Spring 2004

Astronomy 230 Spring 2004

Peptide Bond

- When in a solvent (water), the OH loses an H, and the NH₂ gains an H.
- We have positive and negative attracted to each other.
- A peptide bond is formed! (Just think of the hook and eye.)
- The bonding is very important to life, as some of the nucleic acids can be huge (up to 10¹⁰ atoms)


Astronomy 230 Spring 2004

Feb 20, 2004

So?

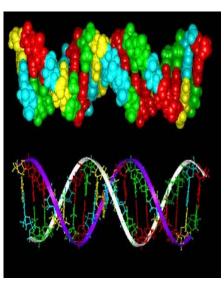
- Amino acids are essential for life.
- But who orchestrates or writes the message that the amino acids make up?
- Need something to teach them how to spell.

http://www.neb.com/neb/tech/tech resource/mis

Feb 20, 2004

Astronomy 230 Spring 2004

Nucleic Acid: DNA and RNA



- Two main types of nucleic acid.
- A polymer built up from monomers.
- RNA (RiboNucleic Acid) is usually a long strand
- DNA (DeoxyriboNucleic Acid) is the double helix-visualize as a spiral ladder.
- These amino acids carry the genetic information of the organism-coded into the amino acid chain.
- It is very much like computer code in many ways- and teaches them to spell.

DNA / RNA

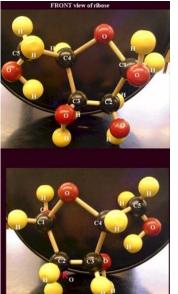
- The origins of DNA and RNA are mysterious and amazing
- DNA/RNA is complex: Built from three basic types of monomers
 - 1. Sugar (deoxyribose or ribose)
 - 2. A phosphate PO₄
 - 3. One of four "nitrogenous bases"
 - Adenine (A)
 - Guanine (G)
 - Cytosine (C)
 - Thymine (T) in DNA / Uracil (U) in RNA
 - These four monomers are collectively called "nucleotides"

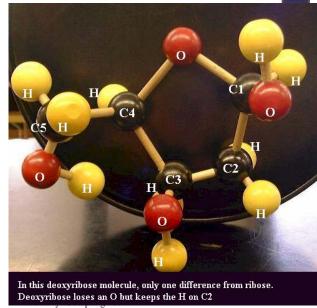
Astronomy 230 Spring 2004

Astronomy 230 Spring 2004

Feb 20, 2004

Sugars: Ribose or Deoxyribose

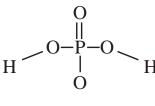

We will represent the sugar molecule (either ribose or deoxyribose) as a pentagon with two eyes.

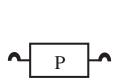

Feb 20, 2004

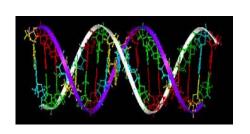
Astronomy 230 Spring 2004

http://www.dscc.edu/bwilliams/Biology/biology1molemodels.htm

Sugars: Ribose or Deoxylribose




http://www.dscc.edu/bwilliams/Biology/biology1molemodels.htm


Phosphates

- Is often referred to as phosphoric acid.
- Makes five bonds with oxygen.



Phosphates and Sugars

- Make the sides of the twisted DNA ladder structure.
- Sugars and phosphates connect up in alternating bonds.
 P-S-P-S-P
- These are phosphodiester bonds.

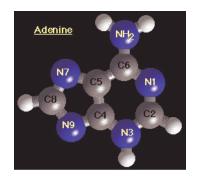
Astronomy 230 Spring 2004

Astronomy 230 Spring 2004

And the Bases

5 types in 2 groups:

- Purines- Adenine and Guanine
- Pyrimidines-- Cytosine, Thymine, and Uracil


Astronomy 230 Spring 2004

Feb 20, 2004

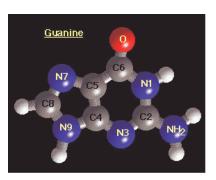
Purines: Adenine

• 5-sided ring built on the side of a 6-sided ring.

Adenine (A)

Adenine

Astronomy 230 Spring 2004


http://resources.emb.gov.hk/biology/english/inherit/genetic

http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.gif

Purines: Guanine

• 5-sided ring built on the side of a 6-sided ring.

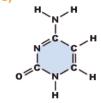
Guanine (G)

H₅C₅N₅O

Guanine

http://resources.emb.gov.hk/biology/english/inherit/genetic

Astronomy 230 Spring 2004 http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.gif


Pyrimidines: Cytosine

• 6 sided rings (without a 5 sided ring)

Cytosine (C)

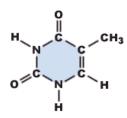
 $H_5C_4N_3O$

Cytosine

Astronomy 230 Spring 2004

http://resources.emb.gov.hk/biology/english/inherit/genetic

http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.gif


Pyrimidines: Thymine

• 6 sided rings (without a 5 sided ring)

Thymine (T)

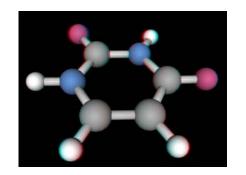
 $H_6C_5N_3O_2$

Thymine

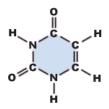
Astronomy 230 Spring 2004

http://resources.emb.gov.hk/biology/english/inherit/genetic

http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.gif


Feb 20, 2004

Feb 20, 2004


Pyrimidines: Uracil

• 6 sided rings (without a 5 sided ring)

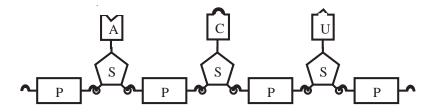
Uracil (U)

 $H_1C_1N_2O_2$

Uracil

http://nautilus.fis.uc.pt/molecularium/stereo/ http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.gif

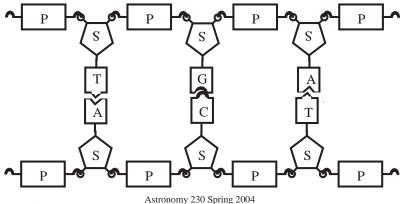
DNA

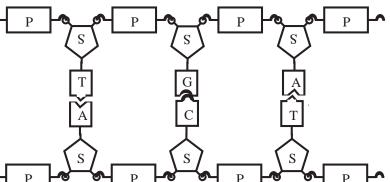

Astronomy 230 Spring 2004

- Schematic of a RNA molecule.
- This segment can be read from left to right as ACU– called a codon (a three letter word, so to speak)

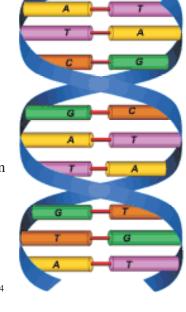
Making RNA

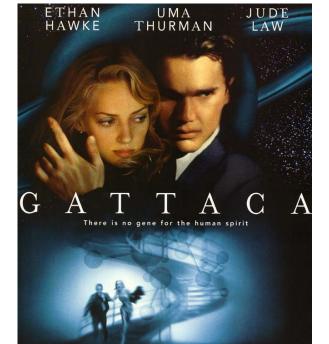
- Can be translated to a specific genetic code– this corresponds to the amino acid Threonine. GGU is gylcine.
- By building up these amino acid codons, we can spell out (and thus construct) a protein.




- For life more complicated than viruses, the genetic code is stored in DNA.
- Differs from RNA in a few ways: uses deoxyribose sugar rather than ribose sugar and it uses thymine instead of uracil.
- Forms the double strand where two complementary bonds are held together with weaker hydrogen bonding- allowing easier separation.
- In that case, bases form unique pairs:
 - AT, TA, GC, CG

DNA

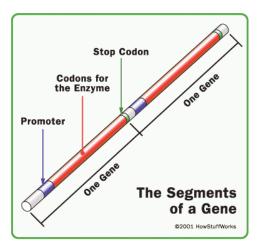

• A codon of DNA: AT, CG, TA



The Double Helix

- Resembles a twisted ladder
- The sides of the DNA ladder are made of the sugar and phosphate.
- The steps or rungs of the ladder are composed of one of the 4 nitrogenous base pairs.
 - AT, TA, GC, CG
- The ladder is twisted into the helix shape since the hydrogen bonds are at an angle.
- 3 pairs make up a codon (4x4x4 = 64)
- Each codon is info on the amino acid. but only 20 of those- over constrained.

Astronomy 230 Spring 2004


Astronomy 230 Spring 2004

Genes

- Each codon specifies an amino acid, and a sequence of condons specifies a protein or enzyme.
- E. coli bacterium has about 4,000 genes, and at any time those genes specify about 1,000 enzymes. Many genes are duplicates.

Astronomy 230 Spring 2004

Feb 20, 2004

My Old Blue Genes

- Different organisms have different number of genes.
- Tobacco mosaic virus has 4 genes.
- A small bacterium has about 1000 genes—average sized bacterium has 4000 genes.
- The Human Genome Project found 30,000 to 40,000 genes.
- If you took all of the nucleic acid in one human cell and stretched out the long sequence, it would be more than a meter long!
- Human cells have 3 x 10⁹ base pairs, but 98% of it has no obvious function, and 99.9% is the same for all humans.

Astronomy 230 Spring 2004