Astronomy 230

HW #3

by Mark Parisi WOW, THIS IS CREEPY ... EVERYONE WHO CLAIMS TO HAVE BEEN ABDUCTED TELLS THE SAME STORY...

This class (Lecture 17):

Biological Evolution

Fred Knecht William Kormos Adam Molski

Next Class:

Origin of Intelligence

Kerry Doyle Steven Novak

Oct 31:

Alan Francis Katelyn Swartz Octavio Mendoza

Music: Center of Universe - Mr. Children

Astronomy 230 Fall 2006

• Jefferey Lipsey:

Vlad Nicolaescu:

Oct 26, 2006

Astronomy 230 Fall 2006

Presentations

• Fred Knecht: Possibilities of Interstellar Travel

William Kormos: Interplanetary Internet

• Adam Molski: Space Elevator

Outline

- Variation, particularly diversity, in Life from evolution
- And sex
- Radioactive decay
- Early Life—making the atmosphere.
- Summary of life on Earth.

Astronomy 230 Fall 2006

Astronomy 230 Fall 2006

Drake Equation

That's 2.6 life-arising systems/decade

intel /

life

 $= R_* \times f_0 \times n_e \times f_1 \times f_i \times f_c \times L$

advanced civilizations we can contact in our Galaxy today

Star Fraction formation of stars with planets

0.5

star

systems/

 2.7×0.134 = 0.36planets/ system

Earthlike planets per system

Fraction Fraction on which that evolve life arises intelligence

0.095

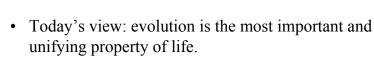
life/

planet

Fraction Lifetime of that advanced communcivilizations icate

yrs/ comm./ intel. comm.

Oct 26, 2006


15

yr

stars/

Oct 26, 2006

Changes in Bio-Systems

- Anaximander (c. 610–547 BC): life arose in water and gradually became more complex
- Empedocles (c. 492–432 BC): survival of the fittest (but, "a good idea stated within an insufficient theoretical frame loses its explanatory power and is forgotten" by Hans Reichenbach)
- Aristotle (384–322 BC): species are fixed and independent of each other \rightarrow evolution discarded for 2000 years
- Fossil record: slowly broke down the Aristotelian theory

Astronomy 230 Fall 2006

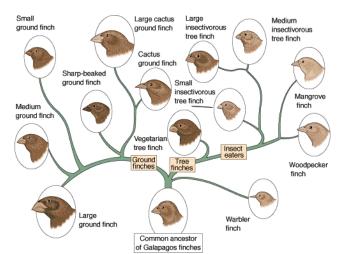
For the Species Survival

Population with varied inherited traits

Elimination of individuals with certain traits

- Darwin (1809–1882) & Malthus (1766-1834):
 - Populations can grow faster than food sources can support them.
 - Creates a struggle for survival that can wipe out competitors.
 - Individual variations has advantages or disadvantages in the struggle for survival
 - Natural selection can create unequal reproductive success

Increasing frequency of traits that enhance survival and reproductive success


Copyright @ 2001 by Benjamin Cummings, an imprint of Addison Wesley

Astronomy 230 Fall 2006

Filling the Niche with Finch

- Other Evidence:
 - Adapted species in the Galápagos Islands in particular finches
 - Artificial breeding of house/farm animals and vegetables
- DNA is really the mechanism of natural selection, but evolution requires both heredity and environment

Astronomy 230 Fall 2006

Mutant Sex

- Mutations from changes in the bases of DNA.
- Usually copying errors, but also radiation— radioactivity, cosmic rays, chemical agents, or UV light.
- About 3 mutations per person per generation.
- Most mutations are neutral, changes in the *junk* DNA.
- Why is sex important to this class?

http://www.mutantx.net/features/press_vw_sexy.html

Astronomy 230 Fall 2006

Oct 26, 2006

Mutant Sex

- Sexual reproduction leads to greater genetic diversity— a difference between prokaryotes and eukaryotes?
- Asexual reproduction does not allow 2 new and beneficial mutations to combine.
- Blackberries have not changed much in 10 millions years, but sexual plants have produced: raspberries, thimbleberries, cloudberries, dewberries, etc.
- Sex is useful in the process, but the mutations are still key.

http://www.alcasoft.com/arkansas/blackberry.html

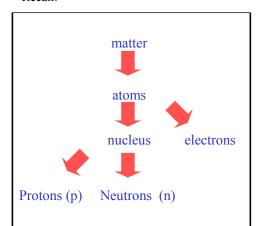
Astronomy 230 Fall 2006

Oct 26, 2006

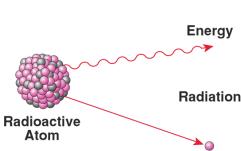
Does it take a long time?

Cabbage, kale, kohlrabi, brussels sprouts, cauliflower and broccoli have same common ancestor—wild mustard. All bred by humans on a very short time scale.

This is selective breeding, but still the potential is in the DNA.


Or domestic lap dogs from wolves in about 5000 years.

Radioactive Dating



Particle

Recall:

- Most atomic nuclei stable
- But some nuclei are *unstable*,
 - ⇒ decay to new nucleus "radioactive"

The Law of Radioactive Decay

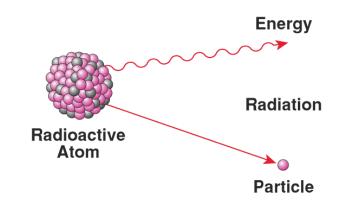
As radioactive "parent" decays, the number of decay product or "daughters" increases

Decay is a good "clock"

- Each radioactive species has different "tick"
- Rate="half-life"

Oct 26, 2006

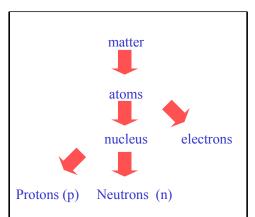
Exponential decay from original population of n₀


Decay Rule **Start out** with N parents, 0 daughters

Time t since start	# parents	# daughters
0	N	0
t _{1/2}	½ N = half as much	½ N have appeared
2t _{1/2}	1/4 N = half again as much	³⁄4 N
3t _{1/2}	1/8 N	7/8 N
30t _{1/2}	About N/109	99.9999999% N

Astronomy 230 Fall 2006

Radioactive Decay Examples



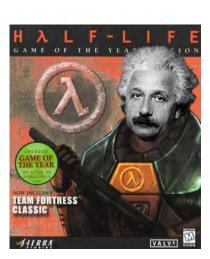
Oct 26, 2006

Astronomy 230 Fall 2006

Radioactive Dating

Example 1: Carbon C=6p

- Carbon-12: 6p+6n, stable
- Carbon-14: 6p + 8n, unstable (1/2 life of 5730 years)
- ¹⁴C→¹⁴N (nitrogen)
- Nitrogen-14: 7p + 7n, stable


Example 2: Uranium U=92p

• Uranium-238: 92 p + 146 n (1/2 life of 4.5 billion years)

²³⁸U → chain of decays→²⁰⁶Pb (lead)

Carbon-14

- Cosmic rays from space are constantly hitting the Earth
- React with ¹⁴N in atmosphere to create ¹⁴C.
- Decays back to ¹⁴N with half life of 5730 years.
- But, there is an equilibrium in abundance
- In atmosphere, the ¹⁴C is mostly in ¹⁴CO².

http://bbspot.com/Images/News_Features/2003/12/half-life.jpg

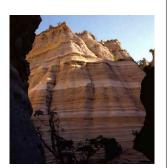
Astronomy 230 Fall 2006

Carbon-14

- Ì
- Plants take in ¹⁴CO² with the ¹²CO² and other animals eat the plants.
- So, every living creature has a equilibrium ratio of ¹⁴CO²/¹²CO²
- When the organism dies, the ¹⁴C decays to ¹⁴N. By measuring how much ¹⁴C remains, you can date the fossil.
- This works well to about 60,000 years.
 - Viking remains in Newfoundland
 – 500 yrs before Columbus
 - Shroud of Turin to 1330 AD

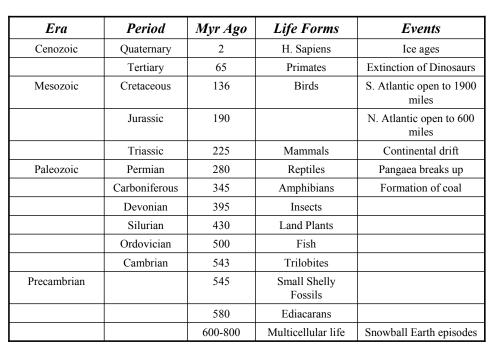
http://web.mit.edu/smcguire/www/newfoundland/newf16.html

Astronomy 230 Fall 2006


Oct 26, 2006

Dating Rocks

- First you ask them out?
- No, you need a radioactive decay that has a longer half-life than ¹⁴C.
- Potassium-argon
 - ⁴⁰K decays to ⁴⁰Ar with a 1200 Myr half-life.
- Uranium-lead
 - ²³⁵U to ²⁰⁷Pb with 700 Myr half-life.
- But these only work with volcanic layers.
- So, the ages of fossils are interpolated from ages of volcanic layers above and below them.


Oct 26, 2006

Astronomy 230 Fall 2006

Increase of Complexity

- Last table showed only the last 800 Myrs.
- More complex and intelligent organisms appeared later on.
- For many years it was thought that life originated in the Cambrian era, then Precambrian fossils were found.
- Then, it was realized that there were single-celled fossils that required microscopes.

Astronomy 230 Fall 2006

Astronomy 230 Fall 2006

Myr Ago	Era	Event
Now	Cenozoic	
	Mesozoic	
	Paleozoic	Macroscopic life/Snowball Earth
	Precambrian	
1000		Worm tracks
		Multicellular algae
		Eukaryotes certain
		Sexual reproduction
2000		Eukaryotes possible
	Protozoic	Oxygen-rich atmosphere
		Snowball Earth
		Formation of continents
3000	Archean	Life begins?
4000		Formation of Oceans
		Bombardment decreases
		Frequent impacts
	Hadean	Earth formed

Concepts

- As prokaryotes are simpler than eukaryotes, we expect them to exist first.
- Identifying fossil prokaryotes is difficult: they're tiny!
- But there is enough evidence that before 1500-2000 Myrs ago there are only prokaryotes fossils.
- Note: the oldest fossils (3800 Myrs ago) are under some dispute, but the 2800 Myr old fossils are universally accepted.
- All of the macroscopic life only arose in the last 600 Myrs- 1/6th of the history of life on Earth.

http://www.earth.ox.ac.uk/research/geobiology/geobiology.htm

Astronomy 230 Fall 2006

Oct 26, 2006

Making Oxygen!

- The early prokaryotes played a crucial role for life on Earth by producing oxygen through photosynthesis.
- Cyanobacteria (was called blue-green algae) changed the world!
- Lived in colonies that formed mats or films, growing into large structures called stromatolites.
- Still around, but much more common before 700 Myrs ago.

Making Oxygen!

- Oxygen was new and important step in intelligence
- It allowed a new energy extraction method
 - Aerobic (using oxygen) metabolism
 - More complex life.
 - Created ozone layer (dry land now an option for life on Earth).

Relationship to ETs

- Ì
- Would evolution on other planets have a similar time-scale?
- Evolution is not a deterministic process.
- Selection seems to be mostly luck, rather than adaptation.
- On the other hand, many traits have developed in several lineages— warm blood and eyes.
- Some say that intelligence seems to increase in many lineages, so it is likely that if live exists then intelligent life exists.
- On the other hand, the plant kingdom never developed neurons.

Summary

- This following slides are from: http://www.udayton.edu/~INSS/
- Nice timeline of life on Earth.

Astronomy 230 Fall 2006

Oct 26, 2006

Astronomy 230 Fall 2006