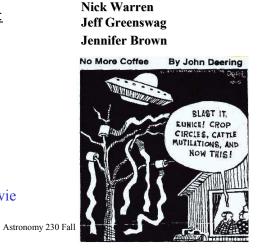
ET: Astronomy 230

This Class (Lecture 28):


Biological Evolution

Next Class:

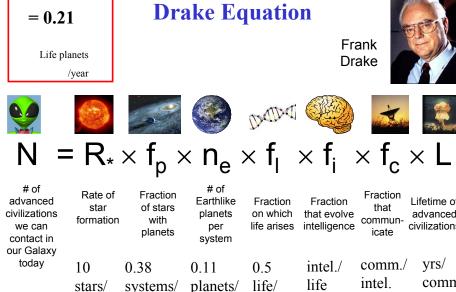
Origin of Intelligence

Music: Space Oddity – **David Bowie**

Oct 31, 2005

HW 7 due on Friday!

Presentations Monday Nov 7th


Outline

- Two types of cell life: Eukaryotes and Prokaryotes.
- All life can be divided into 3 types:
 - Bacteria
 - Archaea
 - Eukarya
- Variation in Life from evolution
- And sex
- Radioactive decay •
- Early Life-making the atmosphere. ٠
- Summary of life on Earth. .

Oct 31, 2005

Astronomy 230 Fall 2004

star

Frank

planet

system Astronomy 230 Fall 2004

Fraction

that

commun-

icate

comm./

L.W. Loonev

intel.

Lifetime of

advanced

civilizations

yrs/

comm.

Evolution of Intelligence

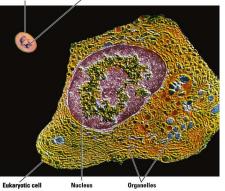
- · First we will examine the diversity of life; the fossil record shows a huge diversity with time.
- Organisms range from bacteria to humans.
- 1.8 x 10⁶ known species
 - Insects account for most (1.0×10^6)
 - Estimated that only 10% are known.
 - Bacteria are hard to classify-only 4000 species so far.
- Remember that all of these organisms use nearly identical genetic codes, so life descended from a common ancestor.
- Primary challenge of biology is to explain how life from a single type of organism, diversified so much.
- Evolution is the primary concept.

yr

Life

If we took all the biomass of all the animals, and all the biomass of all the viruses, bacteria, protozoa, and fungi– who weighs more?

Astronomy 230 Fall 2004

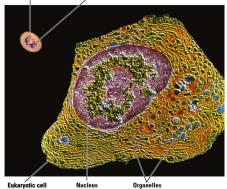

Classification of Life

Prokaryotic cell Nucleoid region

2. Eukaryotes

Oct 31, 2005

- Have a cell nucleus, a membrane to protect the DNA
- Basis of all multi-cell creatures
- Also some single-cell creatures like amoebas.
- DNA arranged into chromosomes in nucleus– 23 pairs for humans.


1004 Pearson Education, Inc., publishing as Benjamin Cummings.

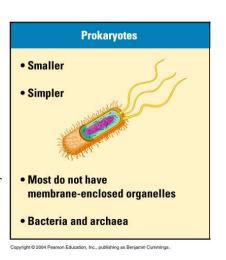
Classification of Life

1. Prokaryotes

- No cell nucleus– DNA floating around
- Always single-cell creatures like bacterium
- Came first
- Outnumber and outweigh the second class (eukaryotes)

Prokaryotic cell Nucleoid region

Copyright © 2004 Pearson Edu


L.W. Looney

Oct 31, 2005

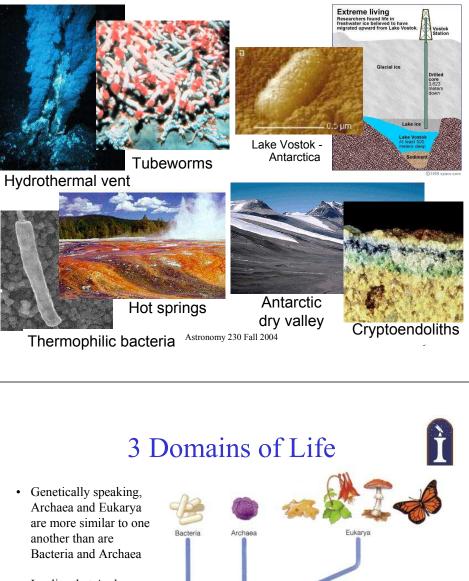
Astronomy 230 Fall 2004

Prokaryotes

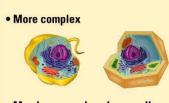
- Divided into 2 domains:
- Eubacteria or "true" bacteria
- Archaea
 - Thought to be oldest life forms.
 - Often found in harsh environments: hot springs, undersea vents, salty seashores, etc, which were probably more common on the early Earth.
 - Some live deep underground, and may represent a significant fraction of the Earth's biomass.
 - Some evidence that ancient organisms were heat-lovers (maybe)

Not your Parent's ET--Extremophiles

- These are microbes that live in the most extreme places on Earth.
- Temperature extremes
 - boiling or freezing, 100° C to -1° C (212F to 30F)
- Chemical extremes
 - vinegar or ammonia (<5 pH or >9 pH)
 - highly salty, up to ten times sea water
- They are exciting, as they are the most likely candidate for extraterrestrial life.
- Probably dominated life on early Earth until fairly recently.


Oct 2	31, 2	005

Astronomy 230 Fall 2004


Eukaryotes

• Larger

L.W. Looney

• All animals, plants, and fungi.

Eukaryotes

- Membrane-enclosed organelles
- Protists, plants, fungi, animals

- Implies that Archaea and Bacteria split and then all Eukarya split from Archaea
- A major implication for the evolution of life on Earth

Oct 31, 2005

earliest organisms The old "kingdom"

animal kingdom

classification is no longer used,

such as plant kingdom or

Genetic Relations

- This is a major change from the old methods of assigning groups based on outward form and anatomy.
- Instead based on studies of the genetic code.
- Surprise: Human and chimpanzees share about 99% of the same DNA, and about 97% with mice.
- Surprise: 2 species of fruit fly look very much alike, but only share about 25%. Some of this differences is due to *junk* DNA.

http://www.pritchettchrtdens.Loopneryly.htm

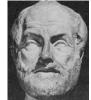
Astronomy 230 Fall 2004

For the Species Survival

Oct 31, 2005

Population with varied inherited traits

2 Elimination of individuals with certain traits


3 Reproduction of survivors

Darwin (1809–1882) & Malthus (1766-1834):

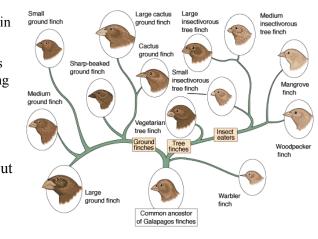
- Populations can grow faster than food sources can support them.
- Creates a struggle for survival that can wipe out competitors.
- Individual variations has advantages or disadvantages in the struggle for survival
- Natural selection can create unequal reproductive success

Changes?

- Today's view: evolution is the most important and unifying property of life.
- <u>Anaximander</u> (c. 610–547 BC): life arose in water and gradually became more complex
- <u>Empedocles</u> (c. 492–432 BC): survival of the fittest (but, "*a good idea stated within an insufficient theoretical frame loses its explanatory power and is forgotten*" by Hans Reichenbach)
- <u>Aristotle</u> (384–322 BC): species are fixed and independent of each other \rightarrow evolution discarded for 2000 years
- Fossil record: slowly broke down the Aristotelian theory

Oct 31, 2005

٠


Astronomy 230 Fall 2004

L.W. Looney

Filling the Niche with Finch

- Other Evidence: - Adapted species in the Galápagos Islands, in
- particular finches
 Artificial breeding of house/farm animals and vegetables
- DNA is really the mechanism of natural selection, but evolution requires both heredity and enviroment

Copyright © 2001 by Benjamin Cummings, an imprint of Addison Wesley.

Astronomy 230 Fall 2004

Mutant Sex

- Mutations from changes in the bases of DNA.
- Usually copying errors, but also radiationradioactivity, cosmic rays, chemical agents, or UV light.
- About 3 mutations per person per generation.
- Most mutations are neutral, changes in the *junk* DNA.
- Why is sex important to this class?

http://www.mutantx.net/features/press_vw_sexy.html

Oct 31, 2005

Mutant Sex

• Sexual reproduction leads to greater genetic diversity– a difference between prokaryotes and eukaryotes?

- Asexual reproduction does not allow 2 new and beneficial mutations to combine.
- Blackberries have not changed much in 10 millions years, but sexual plants have produced: raspberries, thimbleberries, cloudberries, dewberries, etc.
- Sex is useful in the process, but the mutations are still key.

http://www.alcasoft.com/arkansas/blackberry	html
---	------

```
Oct 31, 2005
```

L.W. Looney

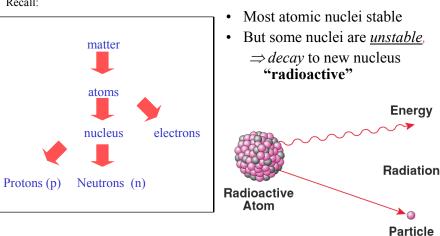
Does it take a long time?

Astronomy 230 Fall 2004

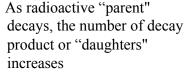
Cabbage, kale, kohlrabi, brussels sprouts, cauliflower and broccoli have same common ancestor-wild mustard. All bred by humans on a very short time scale.

This is selective breeding, but still the potential is in the DNA.

Or domestic lap dogs from wolves in about 5000 years. L.W. Loonev


Radioactive Dating

Astronomy 230 Fall 2004



Recall:

Oct 31, 2005

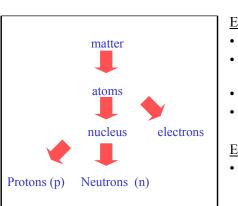
The Law of Radioactive Decay

Decay is a good "clock"

- Each radioactive species has different "tick"
- Rate= "half-life"

Oct 31, 2005

• Exponential decay from original population of n_0

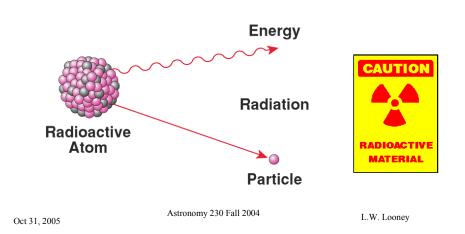

Time t since start	# parents	# daughters
0	Ν	0
t _{1/2}	½ N = half as much	¹ / ₂ N have appeared
2t _{1/2}	¹ / ₄ N = half again as much	³∕4 N
3t _{1/2}	1/8 N	7/8 N
30t _{1/2}	About N/109	99.9999999% N

L.W. Looney

Decay Rule

Radioactive Dating

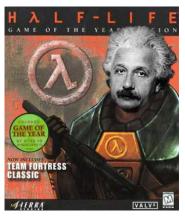
Astronomy 230 Fall 2004


Example 1: Carbon C=6p

- Carbon-12: 6p+6n, stable
- Carbon-14: 6p + 8n, unstable (1/2 life of 5730 years)
 - $^{14}C \rightarrow ^{14}N$ (nitrogen)
- Nitrogen-14: 7p + 7n, stable

Example 2: Uranium U=92p

• Uranium-238: 92 p + 146 n (1/2 life of 4.5 billion years)


Radioactive Decay Examples

Carbon-14

- Cosmic rays from space are constantly hitting the Earth.
- React with ¹⁴N in atmosphere to create ¹⁴C.
- Decays back to ¹⁴N with half life of 5730 years.
- But, there is an equilibrium in abundance
- In atmosphere, the ${}^{14}C$ is mostly in ¹⁴CO².

Oct 31, 2005

http://bbspot.com/Images/News Features/2003/12/half-life.jpg

Carbon-14

- Plants take in ¹⁴CO² with the ¹²CO² and other animals eat the plants.
- So, every living creature has a equilibrium ratio of ¹⁴CO²/¹²CO².
- When the organism dies, the ¹⁴C decays to ¹⁴N. By measuring how much ¹⁴C remains, you can date the fossil.
- This works well to about 60,000 years.
 - Viking remains in Newfoundland– 500 yrs before Columbus.
 - Shroud of Turin to 1330 AD

http://web.mit.edu/smcguire/www/newfoundland/newf16.html Astronomy 230 Fall 2004

Oct 31, 2005

Era	Period	Myr Ago	Life Forms	Events
Cenozoic	Quaternary	2	H. Sapiens	Ice ages
	Tertiary	65	Primates	Extinction of Dinosaurs
Mesozoic	Cretaceous	136	Birds	S. Atlantic open to 1900 miles
	Jurassic	190		N. Atlantic open to 600 miles
	Triassic	225	Mammals	Continental drift
Paleozoic	Permian	280	Reptiles	Pangaea breaks up
	Carboniferous	345	Amphibians	Formation of coal
	Devonian	395	Insects	
	Silurian	430	Land Plants	
	Ordovician	500	Fish	
	Cambrian	543	Trilobites	
Precambrian		545	Small Shelly Fossils	
		580	Ediacarans	

Multicellular life

Oct 31, 2005

L.W. Looney

Snowball Earth episodes

Dating Rocks

- First you ask them out?
- No, you need a radioactive decay that has a longer half-life than ¹⁴C.
- Potassium-argon
 - ⁴⁰K decays to ⁴⁰Ar with a 1200 Myr half-life.
- Uranium-lead
 - ²³⁵U to ²⁰⁷Pb with 700 Myr half-life.
- But these only work with volcanic layers.
- So, the ages of fossils are interpolated from ages of volcanic layers above and below them.

Oct 31, 2005

Astronomy 230 Fall 2004

L.W. Looney

Increase of Complexity

- Last table showed only the last 800 Myrs.
- More complex and intelligent organisms appeared later on.
- For many years it was thought that life originated in the Cambrian era, then Precambrian fossils were found.
- Then, it was realized that there were single-celled fossils that required microscopes.

Myr Ago	Era	Event
Now	Cenozoic	
	Mesozoic	
	Paleozoic	Macroscopic life/Snowball Earth
	Precambrian	
1000		Worm tracks
		Multicellular algae
		Eukaryotes certain
		Sexual reproduction
2000		Eukaryotes possible
	Protozoic	Oxygen-rich atmosphere
		Snowball Earth
		Formation of continents
3000	Archean	Life begins?
4000		Formation of Oceans
		Bombardment decreases
		Frequent impacts
	Hadean	Earth formed
		L.W. Looney

Concepts

- As prokaryotes are simpler than eukaryotes, we expect them to exist first.
- Identifying fossil prokaryotes is difficult: they're tiny!
- But there is enough evidence that before 1500-2000 Myrs ago there are only prokaryotes fossils.
- Note: the oldest fossils (3800 Myrs ago) are under dispute, but the 2800 Myr old fossils are universally accepted.
- All of the macroscopic life only arose in the last 600 Myrs– 1/6th of the history of life on Earth.

Astronomy 230 Fall 2004

Astronomy 230 Fall 2004

http://www.earth.ox.ac.uk/research/geobiology/geobiology.htm

Oct 31, 2005

L.W. Looney

Making Oxygen!

- The early prokaryotes played a crucial role for life on Earth by producing oxygen through photosynthesis.
- Cyanobacteria (was called blue-green algae) changed the world!
- Lived in colonies that formed mats or films, growing into large structures called stromatolites.
- Still around, but much more common before 700 Myrs ago.

Making Oxygen!

- Oxygen was new and important step in intelligence
- It allowed a new energy extraction method
 - Aerobic (using oxygen) metabolism
 - More complex life.

Oct 31, 2005

 Created ozone layer (dry land now an option for life on Earth).

Relationship to ETs

- Would evolution on other planets have a similar time-scale?
- Evolution is not a deterministic process.

Oct 31, 2005

- Selection seems to be mostly luck, rather than adaptation.
- On the other hand, many traits have developed in several lineages- warm blood and eyes.
- Some say that intelligence seems to increase in many lineages, so it is likely that if live exists then intelligent life exists.

Astronomy 230 Fall 2004

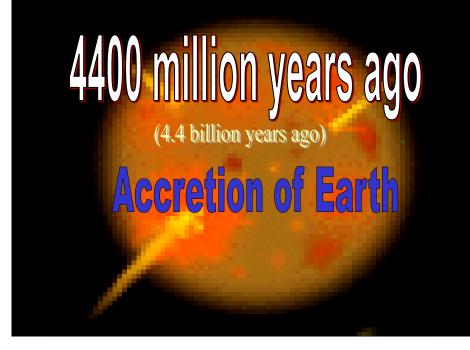
L.W. Looney

• On the other hand, the plant kingdom never developed neurons.

Summary

- This following slides are from: <u>http://www.udayton.edu/~INSS/</u>
- Nice timeline of life on Earth.

Oct 31, 2005

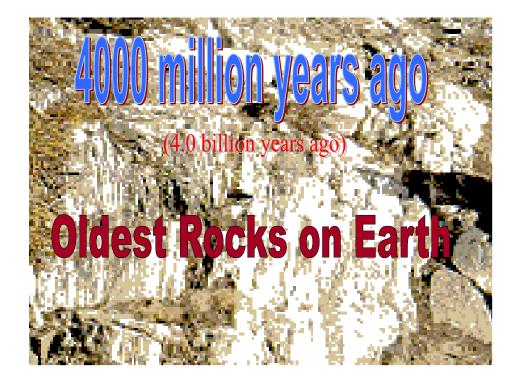

Astronomy 230 Fall 2004

L.W. Looney

4600 million years ago (4.6 billion years ago)

4500 million years ago (4.5 billion years ago)

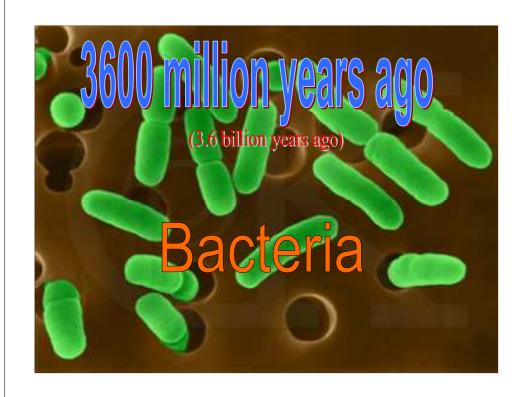
Accretion of Earth Formation of the Moon



Iron Catastrophe Earth separates into layers

A contraction of the second state of the secon

Add milion years ago (4.1 billion years ago) **Early Admosphere** No Life


Liquid Water Present Early Oceans Form


3700 million years ago

(3.7 billion years ago)

Bacteria

<text><text><section-header><text><text><text><text>

Photosynthesis Produces Oxygen!

2900 million years ago

(2.9 billion years ago)

Cyanobacteria Photosynthesis Produces Oxygen!

Cyanobacteria

Photosynthesis Produces Oxygen!

2700 million years ago (2.7 billion years ago)

Stromatolites Cyanobacteria

Photosynthesis Produces Oxygen!

Photosynthesis Produces Oxygen!

2500 million years ago (2.5 billion years ago)

Stromato lites

Photosynthesis Produces Oxygen!

Stromatolites

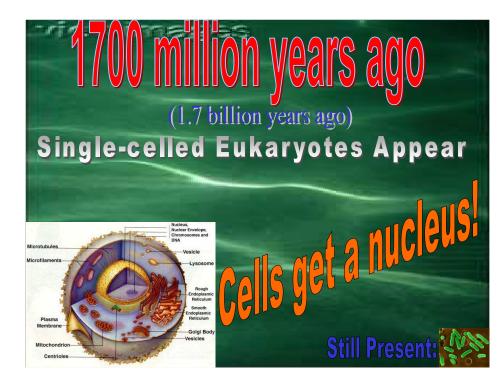
Photosynthesis Produces Oxygen!

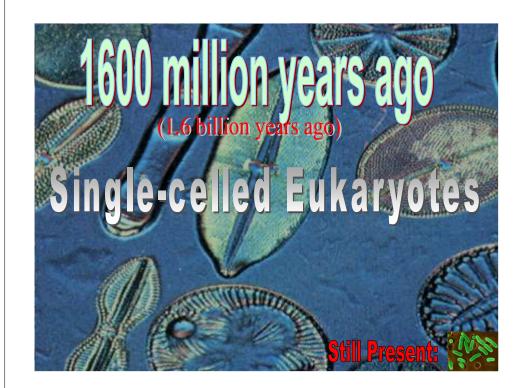
Stromatolites

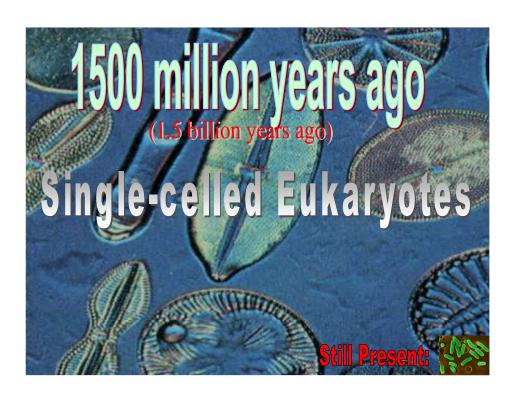
Photosynthesis Produces Oxygen!

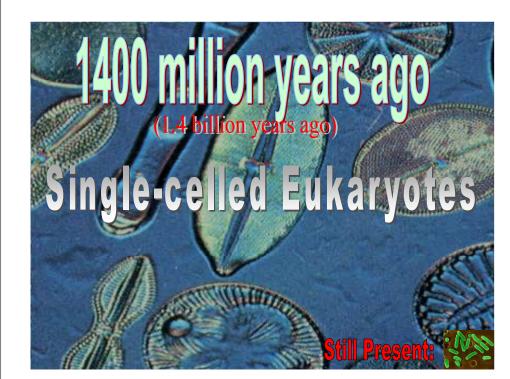
2200 million years ago (2.2 billion years ago) Strongtolites

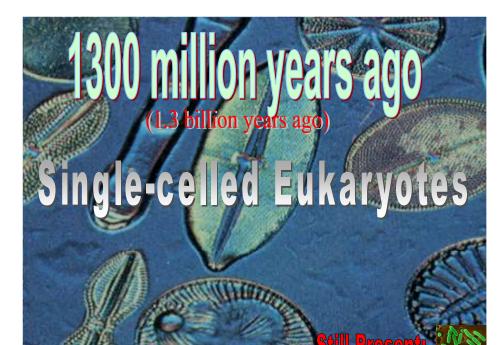
Photosynthesis Produces Oxygen!

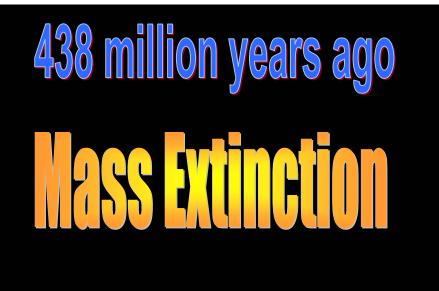

Stromatolites


Photosynthesis Produces Oxygen!









Prese

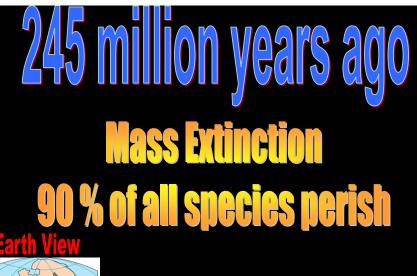
Earth View

543 mya First Hard Parts (Shells & Bones) First Primitive Fish

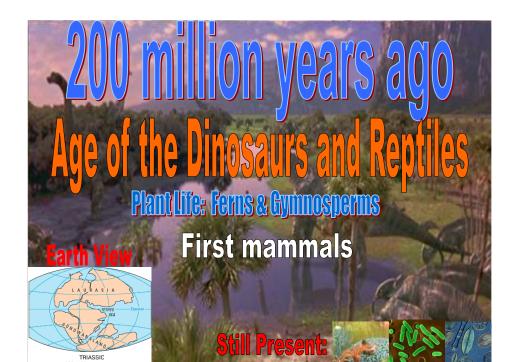
Life Migrates to Land 470 mya

400 million years ago

Most life still underwater


First Seed Plants First Amphibians

Still Present:


367 million years ago Nass Extinction

300 Million years ago Vast Coal Swamps on Land Origin of Many Animals amphibians, sharks, reptiles, insects

65 million years ago Mass Extinction Extinction of the dinosaurs and others

Humans 5 mya

ew

PRESENT DA

Picture Credits

Smithsonian Institute Field Museum NASA

University of California, Berkeley Museum http://rainbow.ldeo.columbia.edu/courses/v1001/7.html

http://www.geol.umd.edu/~kaufman/ppt/chapter3/sld019.htm

http://www.uta.edu/geology/geol1425earth_system/images/gaia_chapter_11/ArcheanLands cape.jpg

http://www.uta.edu/geology/geol1425earth_system/1425chap11.html http://www.geol.umd.edu/~kaufman/ppt/chapter3/sid019.htm

http://www.geol.chid.edu/ kadimacippi/chapteroisido is.htm http://www.exhibits.lsa.umich.edu/Exhibits/Anthropology/Diaramas/Nat.Am./Copper/Copper. html

