ET: Astronomy 230

This Class (Lecture 20):

Origin of Life

Next Class:

Michael Cellini Elisha Reichert Corey Osland

HW #6 is due Friday

Presentations Wednesday Oct 12th Michael Cellini Elisha Reichert Corey Osland

Presentations Monday Oct 24th

L.W. Looney

Jonathan Dellinger Nathan Louer Amit Behal

Music: *Life Begins at the Hop* – XTC Astronomy 230 Fall 2004

Oct 10, 2005

Outline

- Origin of life?
- Early monomers
 - Formed in the atmosphere?
 - Around hydrothermal vents?
 - In space?
- Early polymers ?
- Early Nucleic acids ??????

Paper Rough Draft

Ì

- Worth 5% of your grade.
- First presenters should be writing now!
- Should include most of the details of the final paper.
- Will be looking for scope, ease-of-read, scientific reasoning, proper citation, and general style.
- 8 to 10 pages double-spaced 12-point font, not including references.
- See syllabus for citation style !!!!!

Oct	10	2005

Astronomy 230 Fall 2004

L.W. Looney

Molecular Basis of Life

- 1. Atoms needed are H,O,N, and C with small amounts of P and S.
- 2. 2 basic molecules are essential for life: proteins and nucleic acids
- 3. Both are polymers- made of simpler monomers that make up the "alphabet" or code of life. These direct the transcription and translation of the proteins from the code.
- 4. Proteins and nucleic acids are closely linked at a fundamental level. Communicating through the genetic code that must have originated very early. In most cases, the same code is used by different messages for chicken or shark or human.

Molecular Basis of Life

- 5. #4 rises an important question.
 - Proteins synthesis must be directed by nucleic acids, but nucleic acid transcription requires enzymes (proteins).
 - Chicken or the egg problem?
 - Did proteins arise on Earth first and give rise to nucleic acids, or vice versa?

Oct 10, 2005

Molecular Basis of Life

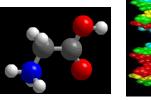
Astronomy 230 Fall 200

- i. Two basic molecules are essential for life: proteins and nucleic acids
- ii. Both are polymers- made of simpler monomers
- iii. Proteins and nucleic acids are closely linked at a fundamental level.
- iv. Did proteins arise on Earth first and give rise to nucleic acids, or vice versa? Or from space?
- v. This leads us to the chemical evolution of life.

Molecular Basis of Life

- Ì
- 6. Careful to distinguish DNA from RNA. RNA probably developed first. Still, a related question is how did the connection between RNA/DNA and the connection with Life's genetic code originate?
- 7. Also, there are some instances of a few organisms where there are small differences in the code of life. The code has evolved, albeit very slightly, since the last common ancestor of all life.
- 8. This leads us to consider the chemical basis of life, implying a tendency toward greater complexity.

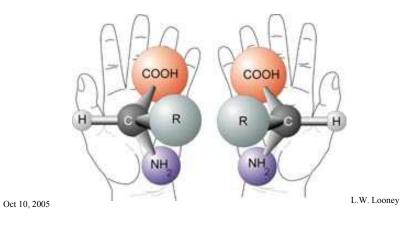
Oct 10, 2005


Astronomy 230 Fall 2004

L.W. Looney

Chemical Evolution

- Chemical basis of life obviously crucial.
- Apparently evolution of life is a continuation of tendencies toward greater complexity
- Chemical evolution has 3 steps:
 - Synthesis of monomers
 - Synthesis of polymers from the monomers
 - Transition to life.

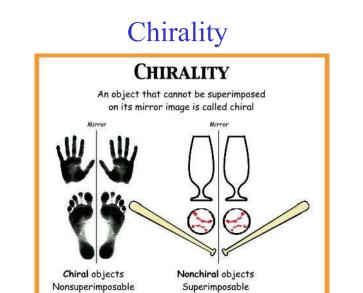


L.W. Looney

L.W. Looney

Chirality

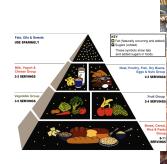
Handedness: Some molecules exist in two versions based on the position of the bonds. One molecule is the mirror image of the other, but they are not similar.



We are Left-Handed?

- Amino acids in non-biological situations are mixtures of both, but in life only left-handed molecules are used.
- Why? We don't know.
- Sugars in life are right-handed
- Suggests a common ancestor for life.
- The opposite should have worked just as well, and this arrangement probably arose out of chance. Once a preponderance of one chirality occurred it was replicated

http://images.amazon.com/images/P/6302877792.01.LZZZZZZZ.jpg


mirror images mirror images Either the thumbs point in opposite direction or the hands are on opposite sides. rse-review.ca/115-32-chirality.jpg Astronomy 230 Fall 2004

http://universe-review.ca/I15-32-chirality.jpg Oct 10, 2005

L.W. Looney

Food Limitations

An ET organism may be made of the same stuff, but if they are made of right-handed amino acids, they couldn't eat our food. Bummer.

From Space?

- The Murchison meteorite (Australia 1969) contained approximately even amount of left and right amino acids
- 70 different amino acids were found in it, but only 6 are used in living organisms.
- New results show that 4 of the amino acids had a slight excess of left-handed types.

Oct 10, 2005

L.W. Loonev

First Life

- We currently think that life appeared on Earth around 3.8 billion years ago, or only 700 million years after the formation of the Earth. (Based on fossil evidence)
- That is about the same time as the heavy bombardment ended. So, that means life was fast-perhaps only a few 10-100 million years from sterile planet to party town.

http://youconnect.canon-europe.com/swedish/2003-10/images/earth/love parade.gi Astronomy Oct 10, 2005

Synthesis of Monomers

Astronomy 230 Fall 2004

Life arose under the following conditions

- Liquid water
- Some dry land
- Energy sources, including UV light, lightning, geothermal.
- A neutral or slightly reducing atmosphere (This is somewhat new). Remember no OXYGEN, mostly methane and CO₂.

Astronomy 230 Fall 2004

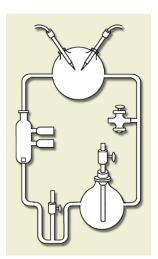
- Reducing has elements that give up electrons, e.g. hydrogen. A good example is the atmosphere of Jupiter: CH₄, NH₃.
- Oxidizing has elements that *take* electrons, e.g. oxygen. A good example is the atmosphere of Mars or modern Earth.
- Neutral is neither.

http://origins.jpl.nasa.gov/habitable-planets/images/ra6-early-earth-th.jpg http://www.pupress.princeton.edu/titles/6903.html

Life

- The most crucial monomers required for life are:
 - Amino acids (20 flavors) for proteins
 - The nucleotides: sugar, phosphates, and nitrogenous bases for **DNA/RNA**.
- How did they occur in a useful configuration so fast on the early Earth?
 - Remember the early Earth is not a fun place.
 - Poisonous gas atmosphere, hot, lots of meteorites, and cable TV is still 3.8 billion years away.

Astronomy 230 Fall 2004



Oct 10, 2005

L.W. Loonev

Miller and Urey Experiment

- In 1953, Miller and Urey (UC) tried to duplicate conditions that they believed existed on the Early Earth– a heavily reducing atmosphere.
- They Mixed CH₄, H₂, and NH₃ gases in a flask for the atmosphere, and connected that to a flask with water for the oceans. A spark was used in the atmosphere flask to simulate lightning.
- They found interesting organic molecules in the "ocean".

Miller and Urey Experiment

- 4 amino acids were made: glycine, alanine, aspartic acid, and glutamic acid. Also some nucleotide bases and acetic acid.
- It has been shown that <u>ALL</u> 20 amino acids needed for life can form in this way.
- Does not produce directly all monomers of nucleic acids, but intermediates were produced.

http://physicalsciences.ucsd.edu/news_articles/miller-urey resurrected051903.htm

0 20	05
	0,20

L.W. Looney

Oct 10, 2005

Astronomy 230 Fall 2004 http://www.vobs.at/bio/evol/e05-millerurey.htm v

Miller and Urey Experiment

- 4 amino acids were made: glycine, alanine, aspartic acid, and glutamic acid. Also some nucleotide bases and acetic acid.
- It has been shown that <u>ALL</u> 20 amino acids needed for life can form in this way.
- Does not produce directly all monomers of nucleic acids, but intermediates were produced.

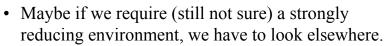
http://www.ucsd.tv/miller-urey/

Early Monomers

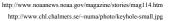
Astronomy 230 Fall 2004

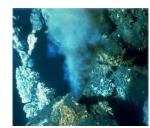
- We do not have a detailed theory of how all the monomers arose on the early Earth.
- General conclusion is that many of the monomers needed for life can be produced in a strongly reducing atmosphere, but that different environments are needed to get specific monomers.
- Don't forget that after the monomers are formed they MUST come together to form the polymers of life.

Early Monomers


- Still, the Miller-Urey experiment legitimized the scientific study of life. The production of amino acids under the presumed conditions of the early Earth was exciting.
- But the assumptions of the experiment have been questioned.
 - Early notions of methane-rich reducing atmosphere are wrong
 - We still don't know early atmospheric composition well enough to make stronger case
 - We still don't know how this leads to DNA, the basis of all terrestrial life
- Recently, a group in Japan has showed that with enough energy, you can still get significant yields of amino acids in a mildly reducing environment.

Oct 10, 2005


230	Fall	2004	


```
L.W. Looney
```

Other places

- Area around undersea hot vents, some of which have CH₄, NH₃, and other energy-rich molecules like hydrogen sulfide.
- Interstellar space.

Oct 10, 2005

L.W. Looney

The Underwater Vents

Astronomy

- Miles below the ocean surface, life lives on the edge! Places were sunlight never reaches.
- From regions of volcanic spreading of the floor, hydrothermal vents or <u>black smokers</u>, underwater geysers, spew mineral-rich superheated water.
- No plant life, but life <u>thrives</u>. So what does life live on?

The Underwater Vents

Astronomy 230 Fall 2004

Astronomy 230 Fall 2004

Ì

- Chemical reactions or chemosynthesis to produce food instead of the Sun.
- Some life is bacteria, some eat the bacteria, some eat those that eat the bacteria, and some have bacteria inside them in a symbiotic relationship.

The Hot Origins Theory

- Vents are examples of a food chain that does not rely ultimately on photosynthesis.
- Demonstrates that pre-biotic synthesis can occur, but did life begin there?
- And current vents are short-lived– a few decades
- And hot– if synthesis first occurred there, it might have been quickly destroyed.

http://www.xenon.com/vents.htm

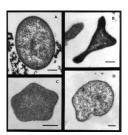
L.W. Loonev

Oct 10, 2005

Astronomy 230 Fall 2004

Interstellar Space

- Another reducing atmosphere is space and the circumstellar disk from which our solar system formed.
- We have seen complex molecules in space.
- The ices would have been destroyed this close to the Sun, but farther out would have been fine.
- Comets could transport the molecular binding dust grains back to the Earth.


http://stardust.jpl.nasa.gov/science/images/pach7.jpg

The Hot Origins Theory

- But live is common in hot environments
 - Hot Springs (like in Yellowstone)
 - Hot oil reservoirs up to 2 miles underground.
- Many of those organism display old genetic characteristics, but some say not ancient enough.
- Did life start somewhere cushy and move there?

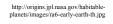
Oct 10, 2005

L.W. Looney

Comets

Astronomy 230 Fall 2004

- Have similarities to interstellar ices
- Comets hit the Earth, and did so much more often in the past.
- About 5% of comets are carbonaceous chondrites, which contain about 1-2% of their mass in organic compounds, including amino acids of nonbiological origins (e.g. the Murchison meteorite).
- Can life get transported?
- Panspermia again.


Astronomy 230 Fall 2004

Oct 10, 2005

So?

- We don't know the origin of the monomers that are needed for life.
- But, there are a variety of processes that could produce them.
 - In Earth's early atmosphere
 - Near hydrothermal vents
 - In interstellar space
- The next step is polymerization

L.W. Loonev

Oct 10, 2005

Polymer Pressure

- Hmm.. Does this mean that the key polymers that keep us alive are intrinsically unstable?
- Yes. Sort of kinda.
- But, we are constantly inputting energy into the system- our body. Some better food than others.
- A simple pattern: simple components + energy leads to greater complexity
- But for early life, the problem was for polymers to stay together.
- Even water helped pull them apart.

Synthesis of Polymers

• If we assume that the early monomers for proteins and nucleic acids existed on the early Earth, then is it plausible that they would polymerize?

- The standard idea of the prebiotic soup would suggest that it is easy to form polymers, but not so fast.
- The problem is that the separate monomers are a lower energy state. They like to be separate.
- It's an uphill battle for the early monomers to turn into polymers.

Oct 10, 2005

Oct 10, 2005

http://www.heartsong3.com/Images%202000/Uphill.jp

Making Them Hook Up.

- One idea is for the early soup to quickly evaporate into a condensed soup— so the monomers can join up.
- Another idea, is to find an energy producing reaction that promotes polymerization.
 - Energy currency in life now is ATP (adenosine triphosphate), which is an adenine base, a ribose sugar, and a tail of 3 phosphates. The phosphates bonds are broken to provide energy and allow bonding.

Primordia

 Too complicated for early life, but there are other similar molecules that could do a similar job. Maybe produced in a Miller-Urey procedure?

Astronomy 230 Fall 2004

http://www.physics.uc.edu/~hanson/ASTRO/ LECTURENOTES/ET/Earth2/PrimordialSou p2.jpg

Hooking up Dirty

- Polymerization in clay soils?
- Clay has layers of silicates and water.
- · Add water, the layers expand and amino acids can move between layers.
- Remove water, the layers contract and the amino acids get absorbed onto the clay surfaces.

• Experiments have shown that certain

clays, promote polymerization of 50 or more amino acids chains with

- Add water, and the polymers are released.
- Think of the ocean tides fueling the polymerization.

Oct 10, 2005

http://www.clw.csiro.au/education/soils/images/clay_soil.jpg Astronomy 230 Fall 2004 L.W. Loonev

Nucleoside Synthesis

- Not well understood.
- Can number the carbon atoms in the ribose sugar.

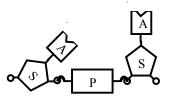
high efficiency.

- It is essential that the base attach at the number 1 carbon only. Otherwise, it is not a nucleoside.
- The base can attach at the 2 or 3 carbon.
- Why was bond 1 preferred on the early Earth?

Adenine Ribose sugar Adenine + Ribose Sugar \rightarrow Adenosine + H₂O

So... And RNA/DNA?

- There are a few ways that amino acids can hookup and form polymers, but nucleic acids are more difficult to understand as they are more complex.
- What is the basic monomer of RNA or DNA?
- Remember the building blocks are:
- Sugars - Phosphates - Bases • So, one of each is a nucleotide


```
Oct 10, 2005
```


Astronomy 230 Fall 2004

L.W. Looney

Phosphate Issues

- To make a nucleotide, the phosphates must then attach at the 3 and 5 carbons.
- In the lab, the phosphates tend to attach to the 2 and 5 carbons.
- This causes a misalignment, which prevents long stands.

Oct 10, 2005

sugar

Nucleotide Synthesis

- · Nucleotide synthesis is not very efficient
- Heating ribose sugar with some purine bases can produce a few nucleotides, and added salt can produce a better yield.
- So, again, maybe an evaporating pool with geothermal energy.
- But nucleotides with pyrimidine bases are more difficult.
- Some have argued for catalyst with metal ions can work.
- So, some ionized metals in the pool too?

http://www.themonkees.com/quizzes18.htm Astronomy 230 Fall 2004

Oct 10, 2005

Protein Probability

- Ì
- Seems easiest to produce a protein, so what is the chance of getting a useful protein with the proper order of amino acids from chance?
- Toss of a coin. 50/50 (or ¹/₂) chance of heads or tails.
 - If you want 10 heads in a role you can multiple the chance of
 1 throw (¹/₂) times 1 throw (¹/₂) times...etc. or (¹/₂)¹⁰ or 1 time out of 1024 attempts.

Poly Summary

- Polymerization of amino acids on the early Earth is plausible.
- Synthesis of nucleic acids seems to be much harder.
- Perhaps proteins from amino acid polymers played a role? Chicken came first?
- It is still more difficult, because life requires useful polymers. The order of the monomers determines the properties.

Oct 10, 2005

Oct 10, 2005

Astronomy 230 Fall 2004

L.W. Looney

Probability of Randomly Forming Life?

- The polymer game is more complex with 20 options of amino acids so if random, the chance of getting a single amino acid is 1/20.
- For a protein with a specific 10 amino acids in order.
 - (1/20)¹⁰ or about 1/10¹³ or 1 chance in 10 trillion!!!!

http://www.citypaper.net/hth

Latest studies: A third of Americans are overweight, and an additional quarter are or Astronomy 230 Fall 2004 L.W. Loonev

Astronomy 230 Fall 2004

http://cruel.org/kitchen/shrunken.htm

L.W. Looney

Getting Lucky?

• If we throw enough coins, we will get 10 heads

- And if there were very large numbers of monomers, then even a very unlikely event can
- Perhaps time is the hero of the story?
- But, don't forget a typical protein can have easily more than 200 amino acids. That is a chance of success of (1/20)²⁰⁰!
- A generous estimate of the number of trials that the early Earth had was about 10⁵¹.
- http://member s.aol.com/LIL AUTHOR1/h ourglass.jpg

L.W. Loonev

Oct 10, 2005

in a row.

Astronomy 230 Fall 2004

Pessimist?

- Bottom line is that we can not expect life to arise from completely random combinations of molecules to make more complicated molecules.
- Something else must play a role.
- Some proteins might have a preferred assembly.

Pessimistic?

- But, maybe the early Earth only had a few amino acids at first. Then the odds are better for certain proteins.
- But, we require more than just 1 protein to be formed.
- And first life probably needed many proteins as well.

http://www.physics.brown.edu/Studies/Demo/solids/demos/1a2020.jpg

L.W. Looney

Oct 10, 2005

Astronomy 230 Fall 2004

Life – Gen Eds

- 1. Precise way to reproduce instruction set (but not perfect)
- 2. Ability to control chemical reactions via catalysts.
- 3. A protective enclosure that separates the instructions and the catalysts from the environment. Becomes an individual not just a soup of chemicals
- 4. Method for acquiring and using energy.
- 5. Interconnections of the above.

Transition to Life?

- Really the big question.
- How difficult is it for the collection of polymers to become life?
- The last step in chemical evolution is really biological evolution.

Oct 10, 2005

Astronomy 230 Fall 2004

L.W. Looney