ET: Astronomy 23 Section 1– MWF 1400-14 134 Astronomy Building	30 1 50	• What is n _e ?			
This Class (Lecture 13):HW #3 isThis Class (Lecture 13):Presentations MNature of LifeAndrew CoughtNext Class:Chris FischettiAndrew CoughlinPresentations MNicolas JaramilloJeremey GrimaChris FischettiMichael YurgilTianxiao MaTianxiao Ma	- Bi is due today. Is due today. Life • Protection Iife. Iife. Iife. • Protection • Protect		 Broken into 2 terms. Jife on Earth. Protein and Nucleic acids are the two main polymers of ife. 		
Music: <i>Blackhole Sun</i> – Soundgard Astronomy 230 Fall 2004	den L.W. Looney	Sept 23, 2005	Astronomy 230 Fall 2004	L.W. Looney	
= 3.8 Planetary systems year $= 3.8$ $= 3.8$ Planetary systems year $= 3.8$ $= 3.$	Frank Drake Frank Drake Frank Drake Fraction t evolve ligence Fraction t evolve ligence Fraction t evolve t evolve fi $f_i \times f_c \times L$ Fraction t advanced civilizations t evolve fi e intel. comm./ yrs/ fe intel. comm.	n _p : number of system The class va f _s : fraction of s develop on o • We can list 5 si will have an eff	$n_e = n_p \times f_s$ planets suitable for life lue (median) was $n_p =$ stars whose properties one of its planets tuations that Sect on f_s .	by per planetary 1! are suitable for life to Output	
Sept 23, 2005 Astronomy 230 Fall 2004	L.W. Looney	Sept 23, 2005	Astronomy 230 Fall 2004	http://nike.cecs.csulb.edu/~kjliviow/allogouseRlanet s%2001.jpg	

Differences of Stars to Life

Metal rich stars. Stars with heavy elements, probably 1. more likely to have planets. Suggested in the current planet searches. About 90% of all stars have metals.

Differences of Stars to Life

- Length of time on the main sequence. We need 3. temperature stability for 5 billion years to get intelligence on Earth. This rules out stars more massive than 1.25 solar masses! 90% of all stars are less massive than that.
- 4. Minimum mass of star. If ice exists close to the star, that would imply the formation of Jupiter-like planets not Earth-like planets. And, any life bearing planet would have to be closer to the star- and closer to stellar effects (e.g. tidal locking and more flares from low mass stars). That limits us to a minimum of 0.5 solar masses, about 25% of all stars.

Differences of Stars to Life

Main sequence stars. Need the brightness to stay as 2. constant as possible. Otherwise the temperature changes dramatically on the planets. This is 99% of all stars.

Sept 23, 2005

Differences of Stars to Life

Astronomy 230 Fall 2004

L.W. Looney

Binarity. Planets may form. But they may have odd 5. orbits unless the 2 stars are far enough apart or the planet orbits the pair. Only 30% of all stars are single stars. 50% of all stars are single stars or wide binary stars.

L.W. Loonev

http://spaceflightnow.com/news/n0210/11planet

Sept 23, 2005

L.W. Looney

Adding it all up

	Stellar Requirement	Mass Limit	Fraction OK	Cumulative Fraction
✓	Heavy Elements		0.9	0.9
✓	Main Sequence		0.99	0.891
	Main Sequence Lifetime	M < 1.25 M _{sun}	0.90	
	Synchronous Rotation/ Flares	$M > 0.5 \ M_{Sun}$	0.25	
✓	Not a Binary		0.30	0.267
	Wide Binary Separation		0.50	

Sept 23, 2005

Astronomy 230 Fall 2004

L.W. Looney

Stellar Requirement	Mass Limit	Fraction OK	Cumulative Fraction
Heavy Elements		0.9	
Main Sequence		0.99	
Main Sequence Lifetime	M < 1.25 M _{sun}	0.90	
Synchronous Rotation/ Flares	M > 0.5 M _{Sun}	0.25	
Not a Binary		0.30	
Wide Binary Separation		0.50	

f_s

Sept 23, 2005

L.W. Looney

Sept 23, 2005

L.W. Looney

Adding it all up

	Stellar Requirement	Mass Limit	Fraction OK	Cumulative Fraction
/	Heavy Elements		0.9	
-	Main Sequence		0.99	
	Main Sequence Lifetime	M < 1.25 M _{sun}	0.90	
	Synchronous Rotation/ Flares	M > 0.5 M _{Sun}	0.25	
•	Not a Binary		0.30	
	Wide Binary Separation		0.50	

Sept 23, 2005

Astronomy 230 Fall 2004

```
L.W. Looney
```

So Far, We have Studied

- The Universe
 - Big Bang
 - Creation of hydrogen, helium...
 - Galaxy formation
 - Swirls of elements embedded in self-gravitating cloud of dark matter
 - Star birth
 - Energy generation and element production in selfgravitating mass of gas
 - Planets
 - Ice, rock, gas surrounding star form planetesimals, then planets

¥

Life on Earth

- In our scientific approach, we look at life as a result of chemical evolution of complexity.
- We will view the formation of • "life" on planets as we did star. formation
 - A natural consequence of natural laws
 - More specifically, as a consequence of the complex chemistry that is sometimes achieved.

http://www.toothpastefordinner.com/052802/science-only-happens.gif

L.W. Loonev

Cosmic Imperative?

- But is life a cosmic imperative?
- Just like gas forms galaxies, and in galaxies stars and planets form, do chemicals on some planets form molecules that lead to life?

Element Basis of Life

- About 95% of the mass of all terrestrial organisms is composed of only 4 out of 90 elements
 - Hydrogen (61% in humans)
 - **O**xygen (26% in humans)
 - Nitrogen (2.4% in humans)
 - **C**arbon (10.5% in humans)
- **HONC** is essential to life, and it's <u>common</u> in space.

```
Sept 23, 2005
```

Astronomy 230 Fall 2004

L.W. Looney

All Made from the Same Stuff

L.W. Looney

Trace Elements

Ì

In addition to HONC, there are some other elements that are <u>essential</u> for life but in *smaller* amounts:

- Sulfur, magnesium, chlorine, potassium, sodium
 - These other elements make up about 1% of mass of living organisms
 - Exist in roughly the same concentration in organisms as in ocean water
 - <u>Highly suggestive</u> that life began in oceans
 - Furthermore suggests that the evolutionary processes occurred on Earth. Panspermia problems?

Good News

- H,O,N,C is very common in universe everywhere as far as we can tell
 - If life were based totally on rare elements, we might expect its occurrence to be extremely rare...
- So, we expect ET life to be based primarily on HONC.
 - The four primary chemical elements of life with some other simple components can produce staggering complexity.
- But, each planet will feature its own environment of trace elements giving each planet's life a unique twist to the standard HONC chemistry

RECORDED BY THE BEATLES

Sept 23, 2005

Astronomy 230 Fall 2004 http://www.maxxiweb.com/pics/wallpapers/paysages/oceans-006.jpg

Sept 23, 2005

Nature's Complexity

- The workings of biological molecules are an absolute marvel
 - How did this complexity develop?
 - How did it evolve?
- As complex and mysterious as life on Earth may be, we can begin understand it
- Start with the basics:
 - Why are H,O,N,C the basis for living organisms?
 - How do the molecules formed by these (and other elements) work to make DNA, proteins, life?

http://europa.eu.int/comm/environment/life/toolbox/logo life high resolution 2.ipg Astronomy 230 Fall 2004 Sept 23, 2005

Why Carbon Based Life?

- Carbon's electronic structure allows it to form long chains
 - Chains of atoms and chains of molecules- complexity
 - Life needs bonds to be stable but breakable
- Good for us, at temperatures at which water is liquid, carbon bonds are stable but breakable
- Organic chemistry is the special branch devoted to carbon chemistry.

Insulin

http://www.biology.arizona.edu/biochemistry/tutorials/chemistry/page2.html

L.W. Loonev

main backbone of the chemistry.

chemistry of life.

abundant elements found on Earth?

just out of anything lying around.

• Is this good news?

Sept 23, 2005

Sept 23, 2005

Astronomy 230 Fall 2004

We Are Special Stuff?

- Suggests that the formation of life is not able to be formed

- The selection of H,O,N,C seems to be a necessity of the

- In general, Earth life is a carbon based life. Carbon is the

L.W. Looney

Bond, Carbon Bond

- Carbon has 6 protons, 6 neutrons, and 6 electrons
 - Electrons distribute themselves in "shells"
 - Pauli exclusion principle
 - 1st (inner-most) shell wants to be filled by 2 electrons

Astronomy 230 Fall 2004

- 2nd shell wants to be filled with 8 electrons
- BUT, Carbon only has 6 electrons!
 - So, Carbon has 2 electrons in inner shell and 4 in 2nd shell
 - It likes to bond: to "fill" second shell by sharing with four other electrons

Nitrogen

- Actually plays a central role in organic chemistry.
- It is prominent in biological compounds due to its reactivity with carbon and its propensity to form chains in organic compounds

Molecular Basis of All Life

- Great diversity of Life on Earth, but still it is 70% water and 24% four large molecules:
 - Proteins
 - Nucleic Acids
 - Lipids
 - Carbohydrates
- Not completely true. The simplest life, viruses, can have a single molecule of nucleic acid surrounded by a protein coating.

Sept 23, 2005

Astronomy 230 Fall 2004

L.W. Looney

Sept 23, 2005

Astronomy 230 Fall 2004

L.W. Looney

Lipids and Carbohydrates

- Lipids are almost entirely composed of carbon and hydrogen with some oxygen.
- The group of fats, oils, waxes, etc.— hydrophobic
- Lipids are essential for cell membranes.
- Carbohydrates are comprised of sugar molecule chains.
- Carbohydrates are used for energy storage in cells.
- In this class, we will concentrate on **proteins** and **nucleic acids** as the crucial bits for life.
- That's enough for viruses, and probably protolife was similar?

Monomers and Polymers

Ì

- All of the fundamental chemicals of life are organic polymers
 - A monomer is a small molecule (like carbon bonds we have seen).
 - A polymer is a number of monomers joined together to form larger, more complex molecules.
 - Polymers are nice for life, as they can form complex and repetitive sequences

Proteins vs Nucleic Acids

- Proteins are either structural elements or provide catalytic reactions (enzymes).
- Nucleic acids carry the genetic information– Replication of nucleic acid is crucial to reproduction of organism.
- They are the polymers of life!
- Can form complex, repetitive sequences.
- The order of the monomers determines the function of the polymers.
- Monomers are the letters and words in the molecular basis of life, and polymers are the messages.

How is Life Put Together?

- Living things are not just bags of large molecules and polymers mixed in a big soup
 - Living things have structure
 - Plants, animals have different parts
 - Skin, Hair, Leaves, Hearts, etc.

How do these structures relate to the complex organic polymers and DNA?

Sept 23, 2005	Astronomy 230 Fall 2004	L.W. Looney	Sept 23, 2005	Astronomy 230 Fall 2004	L.W. Looney
	DNA Based Life	Ì			
 All life is The basic centered DNA live Excep Cells of organism Heart Leaf et 	based on DNA. What does t c reproducible unit of all living on around the complex DNA molect res in cells of in viruses, which are basically pure different types form different part n cells different from blood cells. cells different from root cells.	his mean? ganisms is ale. 2 DNA s of each			

L.W. Loonev