
Sept 16, 2005
Astronomy 230 Fall 2004 L.W. Looney

This Class (Lecture 10):

Nature of Solar Systems 

Next Class:

Habitable Planets 

ET: Astronomy 230
Section 1– MWF 1400-1450

134 Astronomy Building

HW #2 is due today.HW #2 is due today.

Presentations Sept 21Presentations Sept 21

Carl ThomasCarl Thomas

HassanHassan BhayaniBhayani

Aaron BowlingAaron Bowling

Presentations Sept 26Presentations Sept 26

Andrew CoughlinAndrew Coughlin

Nicolas JaramilloNicolas Jaramillo

Chris Chris FischettiFischetti

Music: Parallel Universe – Red Hot Chili Peppers

Sept 16, 2005
Astronomy 230 Fall 2004 L.W. Looney

Outline

• Planet Searches: What to expect in the future.

• What is fp?

• The formation of the Earth– atmosphere and 

oceans.
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What Are We Looking For?
General Predictions of Solar Nebula Theory

☺ Are interstellar dust clouds common? Yes!

☺ Do young stars have disks? Yes!

? Are the smaller planets near the star?

Not the ones found so far!  Haven’t found 

smaller planets yet!

? Are massive planets farther away?

Not most of the ones found so far!
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Important Caveat

• Our current observations of extrasolar planets do 
not exclude planetary systems like our solar 
system

• Current instruments are most sensitive to large 
planets close to their stars

– Big planet - big wobble

– Close planet - fast wobble

• We only have a little over 10 years of data –
1 orbit’s worth for Jupiter

• To find solar-type systems, we need more 
sensitive equipment
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Detecting the Solar System
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Future Projects
• Atacama Large Millimeter Array (ALMA):  2010

- mm interferometer:  
direct detection of young gas giants

• Kepler:  2007
– Planet Transits

• Next Generation Space Telescope 
James Webb Space Telescope (JWST): 2011

- Direct imaging of forming gas giants?
• Space Interferometry Mission (SIM): 2009?

- Astrometry 
• Terrestrial Planet Finder (TPF): 2012?

- Coronagraph
- IR interferometer

• Terrestrial Planet Imager (TPI): 2015?
– Either a visible band coronagraph or a large-baseline 

infrared interferometer.  Imaging extrasolar Earths!!!!

Sept 16, 2005
Astronomy 230 Fall 2004 L.W. Looney

64 x 12 m @ 16,400 ft Chajnantor
Chile

ALMA -- 2010
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Kepler

1.4 meter mirror, 

measuring accurate 

brightness of stars.

A terrestrial-sized 

Earth-like planet  

would dim the star's 

light by 1/10,000th –

comparable to 

watching a gnat fly 

across the beam of a 

searchlight.
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JWST

James Webb 

Space Telescope: 

Successor to HST

6.5 meter 

observatory

Working in the 

infrared with a 

coronagraph.
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The Coronagraph Advantage
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Space Interferometry Mission

http://planetquest.jpl.nasa.gov/SIM/sim_index.html

Accurately 

measure location 

of stars to micro-

arcseconds.

Need to know 

relative location 

of components to 

50 pm.
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Terrestrial Planet Finder Mission

• Survey nearby 
stars looking for 
terrestrial-size 
planets in the 
"habitable zone”

• Follow up brightest 
candidates looking 
for atmospheric 
signatures, 
habitability, or life itself

• Launch is anticipated between 2012-2015
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TPF
Visual wavelength `coronagraph’

- Find Earth-like planets
- Characterize their atmospheres, surfaces

- Search for bio-signatures of life (O2, H2O, etc)
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Terrestrial Planet Imager

The goal of imaging 

an Earth-like planet.

5 platforms of 4 

eight meter 

interferometer in 

space.

http://spider.ipac.caltech.edu/staff/jarrett

/talks/LiU/origins/openhouse30.html
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TPI -- Scales
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# of 

advanced 

civilizations 

we can 

contact

Drake Equation

N  = R* × fp × ne × fl × fi × fc × L
Rate of 

star 

formation

Fraction 

of stars 

with 

planets

# of 

Earthlike 

planets 

per 

system

Fraction 

on which 

life arises

Fraction 

that evolve 

intelligence

Fraction 

that 

commun-
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Lifetime of 

advanced 

civilizations

Frank 

Drake

10
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Now, for fp
• About 2/3 of all stars are in multiple 

systems.

– Is this good or bad?  

• Disks around stars are very common, 
even most binary systems have them.

• Hard to think of a formation scenario 
without a disk at some point– single or 
binary system.

• Disk formation matches our solar 
system parameters.

• We know of many brown dwarves, so 
maybe some planets do not form around 
stars.

– There might be free-floating planets, 
but…
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Now, for fp
• Extrasolar planet searches so far give 

about fp ~ 0.03, but not sensitive to 

lower mass systems.

• Maximum is 1 and lower limit is 

probably around 0.01. 

• A high fraction assumes that the disks 

often form a planet or planets of some 

kind.

• A low fraction assumes that even if 

there are disks, planets do not form.

• This is not Earth-like planets, just a 

planet or many planets.
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Radius 6378 km
Surface gravity 9.8 m/s2

Mass 6.0x1024 kg
Distance to Sun 1.5x108 km
Year 365.2422 days
Solar day 1 day

Radius 0.272 Earth
Surface gravity 0.17 Earth
Mass 0.012 Earth
Distance to Earth 384,000 km
Orbital Period 27.3 days
Solar day 27.3 days

Earth-Moon Comparison
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Formation of the Earth

• Focus on the formation of 

the Earth, including its 

atmosphere and oceans.

• Earth formed from 

planetesimals from the 

circumstellar disk.

• Was hot and melted 

together.

• The biggest peculiarity, 

compared to the other 

planets, is the large moon.
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A Double World

Why a “double world”?

– Most moons are tiny 
compared to the planet

• The Moon is over 25% the 
diameter of Earth

• Jupiter's biggest moons are 
about 3% the size of the 
planet

– The Moon is comparable to 
the terrestrial planets

• About 70% the size of 
Mercury

• Nearly the same density as 
Mars

Earth and 
Moon 
together 
from 
Voyager 1 
(1977)
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The Moon

The Moon's surface 

is barren and dead

– No water, no air

– No life!
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J. Tucciarone

Formation of the Moon: Smack

• Collision of Earth 

with a Mars-

sized body early 

in the solar 

system’s history

• Iron-rich core of 

the impactor 

sank within Earth

• Earth’s rotation 

sped up

• Remaining ejecta thrown into orbit, coalesced into the 

Moon
Sept 16, 2005
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Why is this a good hypothesis?

• The Earth has a large iron core 

(differentiation), but the moon 

does not. 

– The debris blown out of collision 

came from the rocky mantles

– The iron core of the impactor 

merged with the iron core of Earth

• Compare density of 5.5 g/cm3 to 

3.3 g/cm3— the moon lacks iron. 

http://www.flatrock.org.nz/topics/odds_and_oddities/assets/extreme_iron.jpg
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Implications

• Hot, hot, hot. Even if the moon theory is 
incorrect, other smaller bodies were playing havoc 
on the surface.

• When they impact, they release kinetic energy and 
gravitational potential.

• In addition, some of the decaying 
radioactive elements heated up the 
Earth– stored supernova energy!

• The planetesimals melt, and the Earth
went through a period of 
differentiation.

http://www.udel.edu/Biology/

Wags/wagart/worldspage/imp

act.gif
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Planetary Differentiation
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Differentiation

• Average density of Earth 
is 5.5 g/cm3

• Average density on the 
surface is 3 g/cm3

• So, something heavy 
must be inside

• When the Earth formed 
it was molten

– Heavy materials (e.g. iron, 
nickel, gold) sank

– Lighter materials (e.g. silicon, oxygen) floated to the 
top
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Structure

• Luckily, not all of the iron sank to 

the center, else we would be still 

in the Stone Age.

• Core is made of 2 parts– inner core 

and the outer core.

• Temperature increases as you go 

deeper.  From around 290 K on 

surface to nearly 5000 K at center. 

– Heated by radioactive decay

– Supernovae remnants

Crust

Mantle

Outer Core

Inner Core
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Inner Core

• Reaches very high 

temperatures– 5000 K 

(Close to the temperature at 

the surface of the Sun)!

• But still the high pressure 

makes the inner core a solid  

– Solid inner core – 1200 km 

radius

• Mostly made of iron (Fe) 

and nickel (Ni) 

http://ology.amnh.org/earth/stufftodo/images/ediblelayers.gif
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Outer Core

• The liquid layer of the Earth, 

high pressure but not enough to 

solidify

– Liquid outer core – 2200 km 

radius

• Mostly Fe and Ni.

• Made of very hot molten liquid 

that floats and flows around the 

solid inner core– creates the 

Earth’s magnetic field. 
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The Mantle

• Largest layer of the Earth

– To a depth of 2900 km

– Temperature increases with depth 

– Made of heavy silicates

• Parts of the mantle are hot enough to                           

have an oozing, plastic flow

– Sort of like Silly Putty

– Currents in the mantle cause plate                              

tectonics

– Hot spots in the mantle can become plumes of magma 

(e.g., the Hawaiian Islands)

http://www.martyspsagradedcards.com/61mm.jpg
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The Crust

• Outside layer of the Earth (includes oceans) that 

floats on top

– About 50 km thick

– Coldest layer – rocks are rigid 

• Mostly silicate rocks

– Made of lighter elements like silicon, oxygen, and 

aluminum

• Oxygen and water are abundant

• Excellent insulator

– Keeps the Earth’s geothermal heat                               

inside!
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Earth's Surface

• 70% of the Earth's 

surface is covered 

with water

– Ocean basins

– Sea floors are young, 

none more than 

200 million years old

• 30% is dry land –

Continents

– Mixture of young rocks and old rocks

– Up to 4.2 billion years old
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Geologically Active Surface

• The young rocks on 
the Earth's surface 
indicate it is 
geologically active

• Where do these rocks 
come from?

– Volcanoes

– Rift valleys

– Oceanic ridges

• Air, water erode rocks

• The surface is constantly changing
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Recycling Bio-elements

• From gravity and radioactivity, the core stays hot.

• This allows a persisting circulation of bioelements through 
continental drift— melting of the crust and re-release through 
volcanoes. 

• Otherwise, certain elements might get locked into sediment 
layers– e.g. early sea life.

• Maybe planets being formed                                      
now, with less supernovae,                                      
would not have enough                                           
radioactivity to support                                        
continental drifts and volcanoes.                               
(Idea of Peter Ward and Donald                                  
Brownlee.)

http://www.pahala-hawaii.com/j-page/image/activevolcanoe.jpg
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The Earth’s 1st Atmosphere

• The interior heat of the Earth helped with the Earth’s early 
atmosphere.

• The inner disk had most gases blown away and the proto-
Earth was not massive enough to capture these gases.  And 
any impacts (e.g. the moon), would have blown the 
atmosphere away.

• Most favored scenario is that comets impacted that 
released – water (H2O), carbon dioxide (CO2), and 
Nitrogen (N2)– the first atmosphere.

• The water condensed to form the oceans and much of the 
CO2 was dissolved in the oceans and incorporated into 
sediments– such as calcium carbonate (CaCO3).
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Our Atmosphere

• Rocks with ages greater than 2 million 

years show that there was little or 

probably no oxygen in the Earth’s 

atmosphere.

• The current composition: 78% 

nitrogen, 21% oxygen, and trace 

amounts of water, carbon dioxide,        

etc.

• Where did the oxygen come from?

• Cyanobacteria made it.

– Life on Earth modifies the Earth’s 

atmosphere.

http://www.uweb.ucsb.edu/~rixfury/conclusion.htm
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This New Planet

• Mostly oceans and some solid land (all volcanic).

• Frequent impacts of remaining planetesimals (ending about 

3.8 billion years ago).

• Impacts would have sterilized the young Earth– Mass 

extinctions and maybe vaporized oceans (more comets?).  

• Impacts and volcanic activity created the continental 

landmasses.

• Little oxygen means no ozone layer– ultraviolet light on 

the surface.

• Along with lightning, radioactivity, and geothermal heat, 

provided energy for chemical reactions.

Sept 16, 2005
Astronomy 230 Fall 2004 L.W. Looney

# of 

advanced 

civilizations 

we can 

contact

Drake Equation

N  = R* × fp × ne × fl × fi × fc × L
Rate of 

formation 

of Sun-

like stars

Fraction 

of stars 

with 

planets

# of 

Earthlike 

planets 

per 

system

Fraction 

on which 

life arises

Fraction 

that evolve 

intelligence

Fraction 

that 

commun-

icate

Lifetime of 

advanced 

civilizations

Frank 

Drake

10 ? Earth Chauvinism?
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ne

Complex term, so let’s break it into two terms:

– np: number of planets suitable for life per planetary 

system

– fs: fraction of stars whose properties are suitable for life 

to develop on one of its planets
http://nike.cecs.csulb.edu/~kjlivio/Wallpapers/Planets%2001.jpg

spe fnn ×=
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Water

• Water is a key to life on Earth.

• Primary constituent of life– “Ugly bags of mostly 
water”

– Life is about 90% water by mass.

• Primary role as a solvent

– Dissolves molecules to bring nutrients and remove 
wastes.  Allows molecules to “move” freely in solution.

– Must be in liquid form, requiring adequate pressure and 
certain range of temperatures.

• This sets a requirement on planets, if we assume 
that all life requires water.
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Water as a Solvent

• The water molecule is “polar”.  The oxygen atoms 

have more build-up of negative charge than the 

hydrogen. This allows water molecules to link up, 

attracted to each other.

• In this way, water attracts other molecules, 

surrounds them and effectively dissolves them into 

solution.
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Example: Dissolving Table Salt

The partial charges of the water molecule are attracted to the 

Na+ and Cl- ions.  The water molecules work their way into 

the crystal structure and between the individual ions, 

surrounding them and slowly dissolving the salt.

http://www.visionlearning.com/library/module_viewer.php?mid=57
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Water

• A very good temperature buffer

– Absorbs significant heat before its temperature changes

– When it vaporizes, it takes heat with it, cooling down 

its original location

• It floats.

– Good property for life in water.

– Otherwise, a lake would freeze   

bottom up, killing life.

– By floating to the surface, it can 

insulate the water somewhat.


