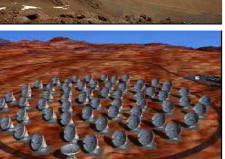

Section 1– M	DNOMY 230 WF 1400-1450 Domy Building	• Planet Searches: What to expect in the future.	
This Class (Lecture 10):	HW #2 is due today.	 What is f_p? The formation of the Earth– atmosphere and 	
Nature of Solar Systems	Presentations Sept 21 Carl Thomas	oceans.	
<u>Next Class:</u>	Hassan Bhayani Aaron Bowling		
Habitable Planets	Presentations Sept 26 Andrew Coughlin Nicolas Jaramillo Chris Fischetti		
Music: Parallel Unive	erse – Red Hot Chili Peppers		
Sept 16, 2005	bmy 230 Fall 2004 L.W. Looney	Astronomy 230 Fall 2004 L.W. Looney	
	Ve Looking For? s of Solar Nebula Theory	Important Caveat	
General Predictions	s of Solar Nebula Theory	 Our current observations of extrasolar planets do <u>not</u> exclude planetary systems like our solar 	
General PredictionsSolution Are interstellar data	ust clouds common? <i>Yes!</i>	 Our current observations of extrasolar planets do not exclude planetary systems like our solar system 	
 General Predictions Are interstellar data Do young stars has 	ust clouds common? <i>Yes!</i> ave disks? <i>Yes!</i>	 Our current observations of extrasolar planets do <u>not</u> exclude planetary systems like our solar system Current instruments are most sensitive to large planets close to their stars 	
 General Predictions Are interstellar data Do young stars hat Are the smaller particular data 	ust clouds common? <i>Yes!</i> ave disks? <i>Yes!</i> lanets near the star? <i>und so far! Haven't found</i>	 Our current observations of extrasolar planets do <u>not</u> exclude planetary systems like our solar system Current instruments are most sensitive to large 	

Sept 16, 2005

Detecting the Solar System

Future Projects


- Atacama Large Millimeter Array (ALMA): 2010
 mm interferometer: direct detection of young gas giants
- Kepler: 2007 – Planet Transits
- Next Generation Space Telescope James Webb Space Telescope (JWST): 2011
 - Direct imaging of forming gas giants?
- Space Interferometry Mission (SIM): 2009?
- AstrometryTerrestrial Planet Finder (TPF): 2012?
 - Coronagraph
 - IR interferometer
- Terrestrial Planet Imager (TPI): 2015?
 - Either a visible band coronagraph or a large-baseline infrared interferometer. Imaging extrasolar Earths!!!!


Astronomy 230 Fall 2004

Sept 16, 2005

L.W. Looney

ALMA -- 2010 64 x 12 m @ 16,400 ft Chajnantor Chile

1.4 meter mirror, measuring accurate brightness of stars.

A terrestrial-sized Earth-like planet would dim the star's light by 1/10,000th – comparable to watching a gnat fly across the beam of a searchlight.

RCS Thruster Module (1 of 4) Battery Star Tracker Photometer Electronics Spacecraft Electronics

Sept 16, 2005

JWST

James Webb Space Telescope: Successor to HST

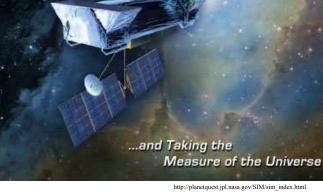
6.5 meter observatory

Working in the infrared with a coronagraph.

Astronomy 230 Fall 2004

L.W. Looney

Sept 16, 2005


Space Interferometry Mission

New Worlds...

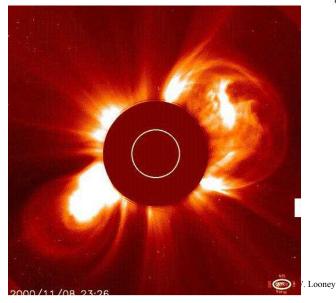
Searching for

Accurately measure location of stars to microarcseconds.

Need to know relative location of components to 50 pm.

Astronomy 230 Fall 2004

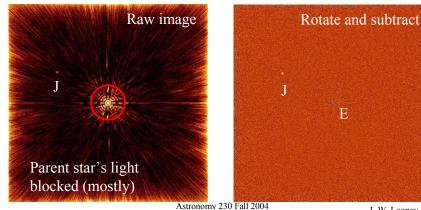
L.W. Looney


Terrestrial Planet Finder Mission

- Survey nearby stars looking for terrestrial-size planets in the "habitable zone"
- Follow up brightest candidates looking for atmospheric signatures, habitability, or life itself

Sept 16, 2005

The Coronagraph Advantage


Sept 10, 2005

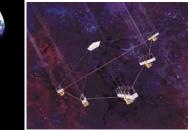
• Launch is anticipated between 2012-2015

TPF

Visual wavelength 'coronagraph'

- Find Earth-like planets
- Characterize their atmospheres, surfaces
- Search for bio-signatures of life (O₂, H₂O, etc)

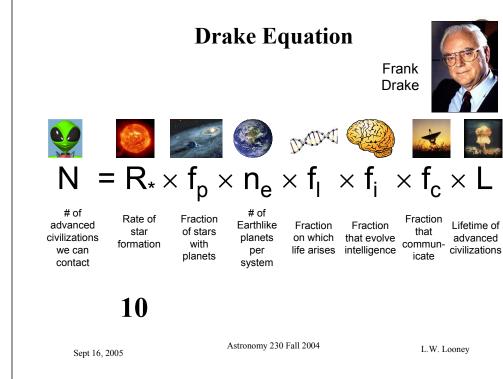
Sept 16, 2005

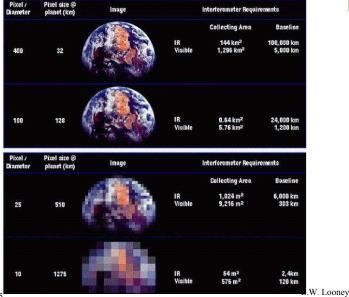

L.W. Looney

Terrestrial Planet Imager

The goal of imaging an Earth-like planet.

5 platforms of 4 eight meter interferometer in space.




Sept 16, 2005

Astronomy 230 Fall 2004

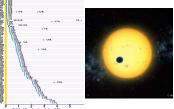
http://spider.ipac.caltech.edu/staff/jarrett /talks/LiU/origing/openhouse30.html

TPI -- Scales

Sept 16, 2005

Now, for f_p

- About 2/3 of all stars are in multiple systems.
 - Is this good or bad?
- Disks around stars are very common, even most binary systems have them.
- Hard to think of a formation scenario without a disk at some point-single or binary system.
- Disk formation matches our solar system parameters.
- We know of many brown dwarves, so maybe some planets do not form around stars.
 - There might be free-floating planets, but...


Sept 16, 2005

Astronomy 230 Fall 2004

L.W. Looney

Now, for f_p

- Extrasolar planet searches so far give about $f_n \sim 0.03$, but not sensitive to lower mass systems.
- Maximum is 1 and lower limit is probably around 0.01.
- A high fraction assumes that the disks often form a planet or planets of some kind.
- A low fraction assumes that even if there are disks, planets do not form.
- This is not Earth-like planets, just a • planet or many planets.

Sept 16, 2005

L.W. Looney

Earth-Moon Comparison

Radius

Mass

Radius Surface gravity Mass Distance to Sun Year Solar day

6378 km 9.8 m/s² 6.0x10²⁴ kg 1.5x10⁸ km 365.2422 days 1 day

500 AU

0.272 Earth Surface gravity 0.17 Earth 0.012 Earth Distance to Earth 384,000 km **Orbital Period** 27.3 days Solar day 27.3 days

Formation of the Earth

- Focus on the formation of the Earth, including its atmosphere and oceans.
- Earth formed from planetesimals from the circumstellar disk
- Was hot and melted together.
- The biggest peculiarity, compared to the other planets, is the large moon.

A Double World

Why a "double world"?

- Most moons are tiny compared to the planet
 - The Moon is over 25% the diameter of Earth
 - Jupiter's biggest moons are about 3% the size of the planet
- The Moon is comparable to the terrestrial planets
 - About 70% the size of Mercury
 - · Nearly the same density as Mars

Astronomy 230 Fall 2004

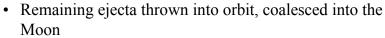
L.W. Looney

Earth and

together

Voyager 1

Moon


from

(1977)

Sept 16, 2005

Formation of the Moon: Smack

- Collision of Earth with a Marssized body early in the solar system's history
- Iron-rich core of the impactor sank within Earth
- Earth's rotation sped up

Sept 16, 2005

Astronomy 230 Fall 2004

L.W. Loonev

J. Tucciarone

The Moon

The Moon's surface is barren and dead - No water, no air

- No life!

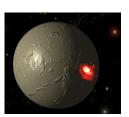
Sept 16, 2005

Sept 16, 2005

Astronomy 230 Fall 2004

L.W. Looney

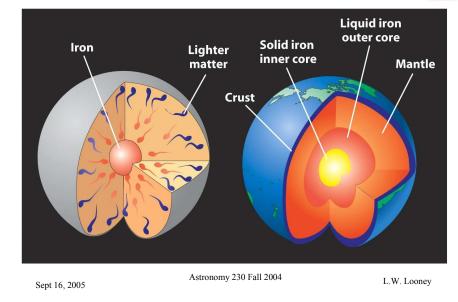
Why is this a good hypothesis?


- The Earth has a large iron core (differentiation), but the moon does not
 - The debris blown out of collision came from the rocky mantles
 - The iron core of the impactor merged with the iron core of Earth
- Compare density of 5.5 g/cm³ to 3.3 g/cm^3 — the moon lacks iron.

http://www.flatrock.org.nz/topics/odds_and_oddities/assets/extreme_iron.jpg

Implications

- Hot, hot, hot. Even if the moon theory is incorrect, other smaller bodies were playing havoc on the surface.
- When they impact, they release kinetic energy and gravitational potential.
- In addition, some of the decaying radioactive elements heated up the Earth– stored supernova energy!
- The planetesimals melt, and the Earth went through a period of differentiation.


http://www.udel.edu/Biology/ Wags/wagart/worldspage/imp act.gif

Astronomy 230 Fall 2004

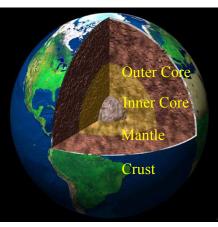
L.W. Looney

Planetary Differentiation

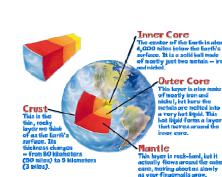
Ì

Sept 16, 2005

Differentiation


Iron

- Average density of Earth is 5.5 g/cm³
- Average density on the surface is 3 g/cm³
- So, something heavy must be inside
- When the Earth formed it was molten
 - Heavy materials (e.g. iron, nickel, gold) sank
 - Lighter materials (e.g. silicon, oxygen) floated to the top

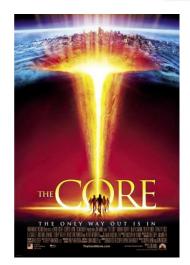


- Luckily, not all of the iron sank to the center, else we would be still in the Stone Age.
- Core is made of 2 parts- inner core and the outer core.
- Temperature increases as you go deeper. From around 290 K on surface to nearly 5000 K at center.
 - Heated by radioactive decay
 - Supernovae remnants

Inner Core

- Reaches very high temperatures- 5000 K (Close to the temperature at the surface of the Sun)!
- But still the high pressure makes the inner core a solid
 - Solid inner core 1200 km radius
- Mostly made of iron (Fe) and nickel (Ni)

http://ology.amnh.org/earth/stufftodo/images/ediblelayers.gif


Sept 16, 2005

Astronomy 230 Fall 2004

L.W. Looney

Outer Core

- The liquid layer of the Earth, high pressure but not enough to solidify
 - Liquid outer core 2200 km radius
- Mostly Fe and Ni.
- Made of very hot molten liquid that floats and flows around the solid inner core– creates the Earth's magnetic field.


```
Sept 16, 2005
```

L.W. Looney

The Mantle

- Largest layer of the Earth
 - To a depth of 2900 km
 - Temperature increases with depth
 - Made of heavy silicates
- Parts of the mantle are hot enough to have an oozing, plastic flow
 - Sort of like Silly Putty
 - Currents in the mantle cause plate tectonics
 - Hot spots in the mantle can become plumes of magma (e.g., the Hawaiian Islands)

The Crust

Astronomy 230 Fall 2004

- Outside layer of the Earth (includes oceans) that floats on top
 - About 50 km thick
 - Coldest layer rocks are rigid
- Mostly silicate rocks
 - Made of lighter elements like silicon, oxygen, and aluminum
- Oxygen and water are abundant
- Excellent insulator

Sept 16, 2005

Keeps the Earth's geothermal heat inside!

Astronomy 230 Fall 2004

Ì

Earth's Surface

- 70% of the Earth's surface is covered with water
 - Ocean basins
 - Sea floors are young, none more than 200 million years old
- 30% is dry land Continents
 - Mixture of young rocks and old rocks
 - Up to 4.2 billion years old

Sept	16,	2005
------	-----	------

Astronomy 230 Fall 2004

L.W. Looney

Geologically Active Surface

- The young rocks on the Earth's surface indicate it is geologically active
- Where do these rocks come from?
 - Volcanoes
 - Rift valleys
 - Oceanic ridges
- Air, water erode rocks
- The surface is constantly changing

Sept 16, 2005

L.W. Looney

```
Recycling Bio-elements
```

- From gravity and radioactivity, the core stays hot.
- This allows a persisting circulation of bioelements through continental drift— melting of the crust and re-release through volcanoes.
- Otherwise, certain elements might get locked into sediment layers- e.g. early sea life.
- Maybe planets being formed now, with less supernovae, would not have enough radioactivity to support continental drifts and volcanoes. (Idea of Peter Ward and Donald Brownlee.)

http://www.pahala-hawaii.com/j-page/image/activevolcanoe.jpg

The Earth's 1st Atmosphere

Astronomy 230 Fall 2004

Ì

- The interior heat of the Earth helped with the Earth's early atmosphere.
- The inner disk had most gases blown away and the proto-Earth was not massive enough to capture these gases. And any impacts (e.g. the moon), would have blown the atmosphere away.
- Most favored scenario is that comets impacted that released water (H₂O), carbon dioxide (CO₂), and Nitrogen (N₂)– the first atmosphere.
- The water condensed to form the oceans and much of the CO₂ was dissolved in the oceans and incorporated into sediments- such as calcium carbonate (CaCO₃).

Our Atmosphere

- Rocks with ages greater than 2 million years show that there was little or probably no oxygen in the Earth's atmosphere.
- The current composition: 78% nitrogen, 21% oxygen, and trace amounts of water, carbon dioxide, etc.
- Where did the oxygen come from?
- Cyanobacteria made it.
 - Life on Earth modifies the Earth's atmosphere.

http://www.uweb.ucsb.edu/~rixfury/conclusion.htm

This New Planet

- Mostly oceans and some solid land (all volcanic).
- Frequent impacts of remaining planetesimals (ending about 3.8 billion years ago).
- Impacts would have sterilized the young Earth– Mass extinctions and maybe vaporized oceans (more comets?).
- Impacts and volcanic activity created the continental landmasses.
- Little oxygen means no ozone layer– ultraviolet light on the surface.
- Along with lightning, radioactivity, and geothermal heat, provided energy for chemical reactions.

```
Astronomy 230 Fall 2004
                                  Astronomy 230 Fall 2004
                                                                       L.W. Looney
                                                                                                                                                                            L.W. Looney
     Sept 16, 2005
                                                                                                         Sept 16, 2005
                            Drake Equation
                                                                                                                                             n
                                                                Frank
                                                                Drake
                                                                                                           Complex term, so let's break it into two terms:
                                                                                                               -n_n: number of planets suitable for life per planetary
                                                                                                                  system
                                                                                                               - f_{c}: fraction of stars whose properties are suitable for life
       = R_* \times f_p \times n_e \times f_I \times f_i \times f_c \times L
 Ν
                                                                                                                  to develop on one of its planets
                                                                                                                                                         http://nike.cecs.csulb.edu/~kjlivio/Wallpapers/Planets%2001.jpg
   # of
                                      # of
              Rate of
                         Fraction
                                                                     Fraction
                                    Earthlike
                                                                             Lifetime of
                                                                                                              n_e = n_p \times f_s
advanced
                                               Fraction
                                                          Fraction
                                                                      that
             formation
                          of stars
                                     planets
civilizations
                                               on which
                                                        that evolve
                                                                              advanced
              of Sun-
                           with
                                                                    commun-
                                               life arises intelligence
                                                                             civilizations
 we can
                                       per
              like stars
                          planets
                                                                      icate
 contact
                                     system
                          9
               10
                                                   Earth Chauvinism?
```

Astronomy 230 Fall 2004

L.W. Looney

Sept 16, 2005

Water

- Water is a key to life on Earth.
- Primary constituent of life- "Ugly bags of mostly water"
 - Life is about 90% water by mass.
- Primary role as a solvent
 - Dissolves molecules to bring nutrients and remove wastes. Allows molecules to "move" freely in solution.
 - Must be in liquid form, requiring adequate pressure and certain range of temperatures.
- This sets a requirement on planets, if we assume that all life requires water.

Astronomy 230 Fall 2004

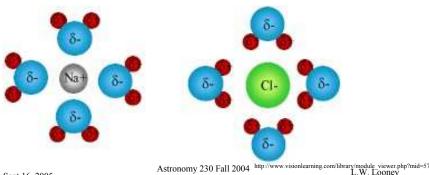
Sept	16,	2005
------	-----	------

L.W. Looney

Water as a Solvent

- The water molecule is "polar". The oxygen atoms have more build-up of negative charge than the hydrogen. This allows water molecules to link up, attracted to each other.
- In this way, water attracts other molecules, surrounds them and effectively dissolves them into solution.

L VV LABOR

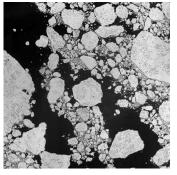

```
Sept 16, 2005
```

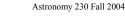
Astronomy 230 Fall 2004

Example: Dissolving Table Salt

The partial charges of the water molecule are attracted to the Na⁺ and Cl⁻ ions. The water molecules work their way into the crystal structure and between the individual ions, surrounding them and slowly dissolving the salt.

Sept 16, 2005


Looney


Water

- A very good temperature buffer
 - Absorbs significant heat before its temperature changes
 - When it vaporizes, it takes heat with it, cooling down its original location
- It floats.

Sept 16, 2005

- Good property for life in water.
- Otherwise, a lake would freeze bottom up, killing life.
- By floating to the surface, it can insulate the water somewhat.

