Astronomy 230 Section 1– MWF 1400-1450 106 B1 Eng Hall

<u>This Class (Lecture 9):</u> Nature of the Solar System/ Habitable Planets <u>Next Class:</u> Nature of Life	First Oral Presentations on Sept 22 and 24! David Sederquist Pranay Patel Doug Jones Michael Chou Eric Mazzone Chris Varney	 Basically a whole lecture for estimating the number of Earth-like planets (read planets with life) per system. Formation of the Moon. Water plays a major role in life as a solvent. Is there a preferred zone for life around the Sun? Did life already pollute the Earth's atmosphere. 		
Music: Parallel Universe – Red Hot Chili Peppers Sept 15, 2004 Astronomy 230 Fall 2004 L.W. Looney Presentations Image: Comparison of Comp		Sept 15, 2004	Astronomy 230 Fall 2004	L.W. Looney
		Presentations		
 Will be treated like a real scientific talk at a meeting. I will keep you to 10 minutes with 5 minutes of questions. Any speculative claims <i>MUST</i> have a scientific reference source. Can't just claim that monkeys live on the Moon. 		 Last semes 90% pow 6% talkin 2% dedic 2% overh If presenta 	verpoint ng with pics from webpages cated webpage	you want.

•

Sept 15, 2004

• What is f_p ?

- Or, on netfiles, send me location

– Or, bring in burned CD

Outline

Oral Presentation

- 1. How relevant is the topic to the search for extraterrestrial life?
- 2. How interesting is the topic for the general class audience?
- 3. Rate the extent of the speakers knowledge on the topic?
- 4. Rate the quality of the overall presentation?
- 5. Does the research have a solid scientific basis?

These questions are rated 1-10 out of 10 scale.

Sept	15,	2004
------	-----	------

Astronomy 230 Fall 2004

L.W. Looney

500 AI

Now, for f_p

- About 2/3 of all stars are in multiple systems.
 - Is this good or bad?
- Disks around stars are very common, even most binary systems have them.
- Hard to think of a formation scenario without a disk at some point- single or binary system.
- Disk formation matches our solar system parameters.
- We know of many brown dwarves, so maybe some planets do not form around stars.
 - There might be free-floating planets, but...

- Extrasolar planet searches so far give about f_p ~ 0.03, but not sensitive to lower mass systems.
- Maximum is 1 and lower limit is probably around 0.02.
- A high fraction assumes that the disks often form a planet or planets of some kind.
- A low fraction assumes that even if there are disks, planets do not form.
- <u>This is not Earth-like planets, just a planet or</u> <u>many planets.</u>

Astronomy 230 Fall 2004

L.W. Looney

Drake Equation

Rate of

star

formation

Fraction

of stars

with

planets

?

Fraction

on which

life arises

Fraction

that

commun-

icate

Fraction

that evolve

intelligence

$N = R_* \times f_{_{D}} \times n_{_{e}} \times f_{_{I}} \times f_{_{i}} \times f_{_{c}} \times L$

of

Earthlike

planets

per

system

of advanced civilizations we can contact

25

Stars/year

Sept 15, 2004

Astronomy 230 Fall 2004

L.W. Looney

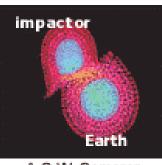
Formation of the Earth

- Focus on the formation of the Earth, including its atmosphere and oceans.
- The biggest peculiarity, compared to the other planets, is the large moon.

Sept 15, 2004

L.W. Looney

Smack!


Lifetime of

advanced

civilizations

- Collision of Earth with Mars-size planetesimal early in history
- Core of planetesimal sank within Earth
- Earth rotation sped up
- Remaining ejecta thrown into orbit sufficient to coalesce into Moon

A.G.W. Cameron Computer simulation

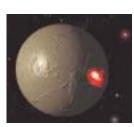
Why is this a good hypothesis?

Astronomy 230 Fall 2004

- The Earth has a large iron core (differentiation), but the moon does not.
 - The debris blown out of collision came from the iron-depleted, rocky mantles. The iron core of the impactor melted on impact and merged with the iron core of Earth, according to computer models.
- Compare density of 5.5 g/cm³ to 3.3 g/cm^3 — the moon lacks iron.

http://www.flatrock.org.nz/topics/odds and oddities/asse ts/extreme iron.jpg

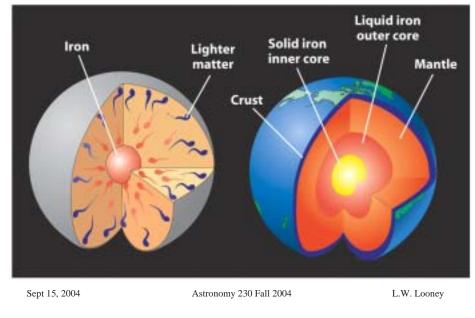
J. Tucciarone Sept 15, 2004


Astronomy 230 Fall 2004

L.W. Loonev

Implications

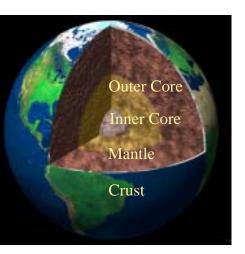
- Hot, hot, hot. Even if the moon theory is incorrect, other smaller bodies were playing havoc on the surface.
- When they impact, they release kinetic energy and gravitational potential.
- In addition, some of the decaying radioactive elements heated up the Earth- stored supernova energy!
- The planetesimals melt, and the Earth goes through a period of differentiation.


http://www.udel.edu/Biology/ Wags/wagart/worldspage/imp act gif

Sept 15, 2004

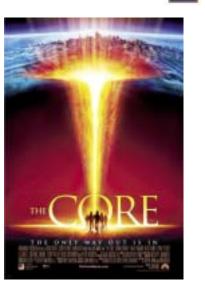
Astronomy 230 Fall 2004

L.W. Looney


Planetary Differentiation

Structure

- Luckily, not all of the iron sank to the center, else we would be still in the Stone Age.
- Core is made of 2 partsinner core and the outer core.
- Temperature increases as you go deeper. From around 290 K on surface to nearly 5000 K at center.
- The deeper you go, more pressure from mass of Earth.



Inner Core

- With high pressures the inner core remains a solid
- Reaches very high temperatures- 5000 K (Close to the temperature at the surface of the Sun)!
- Mostly made of iron (Fe)
- Information about the inner core comes from the study of earthquakes, meteorites and the Earth's magnetic field.
- Might be rotating faster than the rest of the planet.

Outer Core

- The liquid layer of the Earth, high pressure but not enough to solidify
- Mostly Iron.
- Made of very hot molten liquid that floats and flows around the solid inner core- creates the Earth's magnetic field.

Mantle

- Largest layer of the Earth, source of magma and lava
- Distinct from the core
- Temperature increases the deeper you go into the mantle
- Heated from below, parts of the Mantle are hot enough to have an oozing, plastic flow (sort of like silly putty).

Astronomy 230 Fall 2004

Sept	15,	2004	
------	-----	------	--

Astronomy 230 Fall 2004

Crust

L.W. Looney

- Outside layer of the Earth (includes oceans) that floats on top of the mantle
- Much thinner and colder than any of the other layers
- Crust is rocky and broken into about 21 different pieces (like the shell of a cracked hard-boiled egg).
- Oxygen and Water are abundant

L.W. Looney

Recycling Bio-elements

- From gravity and radioactivity, the core stays hot.
- This allows a persisting circulation of bioelements through continental drift— melting of the crust and re-release through volcanoes.
- Otherwise, certain elements might get locked into sediment layers- e.g. early sea life.
- Maybe planets being formed now, with less supernovae, would not have enough radioactivity to support continental drifts and volcanoes. (Idea of Peter Ward and Donald Brownlee.)

http://www.pahala-hawaii.com/j-page/image/activevolcanoe.jpg

Sept 15, 2004

Astronomy 230 Fall 2004

L.W. Looney

Our Atmosphere

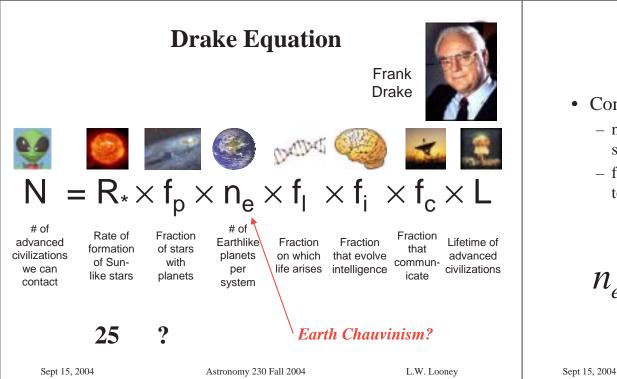
- Rocks with ages greater than 2 million years show that there was little or probably no oxygen in the Earth's atmosphere.
- The current composition: 78% nitrogen, 21% oxygen, and trace amounts of water, carbon dioxide, etc.
- Where did the oxygen come from?
- Cyanobacteria made it.
 - Life on Earth modifies the Earth's atmosphere.

http://www.uweb.ucsb.edu/~rixfury/conclusion.htm

The Earth's 1st Atmosphere

- Ì
- The interior heat of the Earth helped with the Earth's early atmosphere.
- The inner disk had most gases blown away and the proto-Earth was not massive enough to capture these gases. And any impacts (e.g. the moon), would have blown the atmosphere away.
- Most likely the hot proto-Earth heated up the ices of the dust grains that made up the early Earth– water (H₂O), carbon dioxide (CO₂), and Nitrogen (N₂)– the first atmosphere.
- The water condensed to form the oceans and much of the CO₂ was dissolved in the oceans and incorporated into sediments– such as calcium carbonate (CaCO₃).

```
Sept 15, 2004
```


```
Astronomy 230 Fall 2004
```


This New Planet

- Mostly oceans and some solid land (all volcanic).
- Frequent impacts of remaining planetesimals (ending about 3.8 billion years ago).
- Impacts would have sterilized the young Earth– Mass extinctions and maybe vaporized oceans.
- Impacts and volcanic activity created the continental landmasses.
- Little oxygen means no ozone layer– ultraviolet light on the surface.
- Along with lightning, radioactivity, and geothermal heat, provided energy for chemical reactions.

n_e

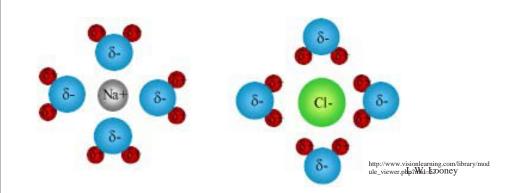
- Complex term, so let's break it into two terms:
 - n_p: number of planets suitable for life per planetary system
 - f_s: fraction of stars whose properties are suitable for life to develop on one of its planets

http://nike.cecs.csulb.edu/~kjlivio/Wallpapers/Planets%2001.jpg

 $n_e = n_p \times f_s$

Water

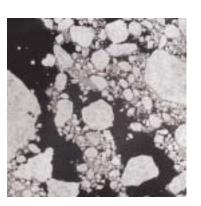
- Water is a key to life on Earth.
- Primary constituent of life- "Ugly bags of mostly water"
 - Life is about 90% water by mass.
- Primary role as a solvent
 - Dissolves molecules to bring nutrients and remove wastes. Allows molecules to "move" freely in solution.
 - Must be in liquid form, requiring adequate pressure and certain range of temperatures.
- This sets a requirement on planets, if we assume that all life requires water.


- Water as a Solvent
- The water molecule is "polar". The oxygen atoms have more build-up of negative charge than the hydrogen. This allows water molecules to link up, attracted to each other.
- In this way, water attracts other molecules, surrounds them and effectively dissolves them into solution.

Example: Dissolving Table Salt

The partial charges of the water molecule are attracted to the Na⁺ and Cl⁻ ions. The water molecules work their way into the crystal structure and between the individual ions, surrounding them and slowly dissolving the salt.

Keeping it Useful

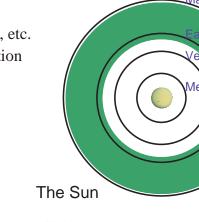

- Need to have enough pressure to keep water from boiling away at low temperature
 - Cooking at higher elevation requires more time.
 Boiling point lowered: water doesn't get as hot.
 - If pressure too low, water goes directly from ice to vapor (like dry ice CO₂)
- High pressure may make life more difficult to form.
- In addition, the range of temperature for Earth based complex life is less than 325K.

Water

- A very good temperature buffer
 - Absorbs significant heat before its temperature changes
 - When it vaporizes, it takes heat with it, cooling down its original location
- It floats.
 - Good property for life in water.
 - Otherwise, a lake would freeze bottom up, killing life.
 - By floating to the surface, it can insulate the water somewhat.

Astronomy 230 Fall 2004

Keeping It Warm, but not too Warm


- What controls a planets temperature?
 - The amount of light received from its star.
 - The amount of energy the planet reflects back.
 - And any Greenhouse effects of the planet.
- Earth's effect raises its temperature by about 15%.
- Given a star's luminosity, a range of acceptable temperatures translates into a range of distances to the star.
- This range is called the star's habitable zone (HZ), as planets in this range have temperatures suited for life.
- Only a rough guideline.

Habitable Zones– Are you in the Zone?

- Long living star
- Planets with stable orbits (thus stable temps)

0.5M_{Sun} star

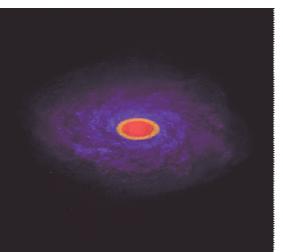
- Liquid Water
- Heavy Elements– C, N, O, etc.
- Protection from UV radiation

Sept 15, 2004

Astronomy 230 Fall 2004

L.W. Looney

The Sun's Variation


- As the Sun ages, it gets slightly brighter.
- When it was younger, its luminosity was 70% current values.
- A young Earth should have been 20K colder-iceball!
- During our ice ages, the temperature only changes by about 1%.

http://www.cherishclaire.com/iceball.htm

Galactic Habitable Zone

- Likewise the galaxy has regions that are better suited to life.
- In the inner regions of our galaxy, supernovae are too frequent.
- In the outer regions, there are too few metals.
- Simulation of Galaxy Zone from early stages to now.

http://astronomy.swin.edu.au/GHZ/GHZmovie.html

Sept 15, 2004

Astronomy 230 Fall 2004

L.W. Looney

The Sun's Variation

- There is evidence that the Earth did nearly freeze over– 2.8 billion years ago and 700 million years ago.
- Probably changes in the Greenhouse gases.
- This implies that the habitable zone can vary with time, thus the real habitable zone is smaller than shown before.
- Some have postulated that real zone is only 0.95 to 1.01 AU! If the Earth were 1% farther away– Iceballed. And n_p would be very small ~ 0.1.

http://www.soest.hawaii.edu/gerard/GG108/images/bylot.jpg

L.W. Looney

Earth's Atmosphere

- Most recent studies suggest an efficient feedback mechanism.
- CO₂ cycles from atmosphere and oceans (buried sediments especially carbonate rock).
- Carbon is then released by volcanoes.
- Removing CO₂ from atmosphere by weathering rocks, allowing new reactions.
- Negative feedback process
 - Increase in temperature: evaporation of oceans, more rainfall, more weathering and CO₂ reduction, so decrease in temperature.


```
Sept 15, 2004
```

Astronomy 230 Fall 2004

Optimism?

- Carl Sagan argues for $n_p > 3$.
 - If Venus had less clouds (less greenhouse) it could have been cool enough for life.
 - If Mars had a thicker atmosphere it could have been warm enough for life.
 - If solvents other than water were used, maybe the moons of the outer planets?
 - Giant Jupiter-like planets close in?

Life Adds to Feedback

- Life increases the weathering of rock.
- J.E. Lovelock has proposed that life stabilizes the planet temperature.
- Regardless, the negative feedback helps with the habitable zone, so we can estimate perhaps n_p is more around 1– more Earth chauvinism?

While lesting out his new cereal mix on his horse Dave gets some unexpected feed-back.

```
Sept 15, 2004
```

Astronomy 230 Fall 2004

L.W. Looney

• We only considered temperature. What about:

- Gravity
- Atmospheric pressure?
- Size of the moon or planet?
- Does life need a Moon-like moon? Does life need the tides? Does the Moon protect the Earth's rotation? Is a Jupiter needed?
- If we impose Earth chauvinism, we can reduce estimate to $n_p \sim 0.1$

L.W. Looney

n_p

- Can range from 0.01 to >3.
- Let's vote!
- In this class, let's assume a value $n_p = ?$

Sept 15, 2004

Astronomy 230 Fall 2004

L.W. Looney