

Outline

- Alternative fuels for space travel
 - Nuclear Fission
 - Nuclear Fusion
 - Antimatter
 - Solar Sails
 - Warp Drives?
 - General Relativity
 - Weird science?

Next Class: Visitations

Travel

FINAL EXAM is Dec 18th.

Dec 3, 2004

Music: The Space Race is Over – Billy Bragg Astronomy 230 Fall 2004

L.W. Looney

Fuel Efficiency

- To really think about interstellar travel or even going to Mars, we need the most bounce for the ounce:
 - Need to carry (probably MUCH) fuel
 - Must be very thrifty about efficiency
 - In other words, if we are going to carry fuel mass on a ship, we had better get as much energy from it as possible!

$E=mc^2$

- Another consequence of special relativity is that mass has energy wrapped up in it
 - In fact, often use units of energy to quantify mass
 - A useful unit of energy in particle physics is the "*electron volt*" or "eV"
 - This is a unit of energy
 - It is used to measure mass as well since mass is really just wrappedup energy
- A proton "weighs" about 1 billion electron volts: 1GeV
- An electron "weighs" only about 511,000 electron volts: 511keV
- Most of the mass of an atom is in its nucleus, clearly!

Astronomy 230 Fall 2004

L.W. Looney

Project Orion

- A spacecraft powered by nuclear bombsnuclear fission.
- Idea was sponsored by USAF in 1958
- Los Alamos group.
- You dropped hydrogen bombs wrapped in a hydrogen rich jacket out the rear of a massive plate.
- 0.1 kton bomb every second for take off, eventually tapering to one 20 kton bomb every 10 sec.

Fuel Efficiency

- <u>Chemical fuel</u> (like burning wood or rocket fuel) one only gets a few eV of energy from each atom or molecule
 - In other words, only about 1 billionth of the total mass of the chemical agents gets converted into energy!
- <u>Nuclear fission</u> gives off a few MeV for each nucleus that fissions:
 - So, about one thousandth of the total mass gets converted into energy!
 - Better than chemical by a factor of a million!
- <u>Nuclear fusion</u> reaction can produce about 10MeV from a light nucleus
 - So, the efficiency is about one hundredth!
 - Getting better!

Dec	3	2004
Dec	э,	2004

Astronomy 230 Fall 2004

L.W. Looney

Project Orion

Ì

- s.i. theoretically around 10,000 to one million seconds
- Limited to about 0.01c.
- But, it is a "dirty" propulsion system.
- A 1963 treaty banned nuclear tests in the atmosphere, spelled the end of "Orion".
- Still argued to be the best rocket we could build today.

http://www.daviddarling.info/encyclopedia/O/OrionProj.html

http://www.daviddarling.info/encyclopedia/O/OrionProj.html

Project Daedalus

- Continuation/extension of Orion
- British Interplanetary Society project (1973-1978)
- A robotic fly-by probe to Barnard's Star
 - 2nd closest star system to Earth, 6 lyr away
 - In human lifetime scale (chose 50 yrs)
 - $-\,$ Needs to reach 12% c.
- Idea was to also use nuclear pulsed power, but fusion.

Project Daedalus

- Good example of interstellar travel with foreseeable technology.
- Use fusion, like the stars.
- But, we have to use the more energy efficient part of hydrogen → helium.
- But there's a problem.

http://www.daviddarling.info/encyclopedia/D/Daedalus.html			http://www.daviddar	http://www.daviddarling.info/encyclopedia/D/Daedalus.html	
Dec 3, 2004	Astronomy 230 Fall 2004	L.W. Looney	Dec 3, 2004	Astronomy 230 Fall 2004	L.W. Looney
T	Deuterium–Tritium Fusion F	leaction	R.	Project Daedalus	Ì
	Deuterium	Tritium	Instead D	Daedalus would use:	
	Alpha Particle	T The fast neutrons are hard to stop, requires too much shielding. And can create extra reactions.	 The by-p Both are magnetic Reasonat 1 MINOI But, it co 	$d + {}^{3}He \rightarrow {}^{4}He + p$ roducts are normal helium and a propositively charges and can be deflect fields into an exhaust. bly efficient, converting 4 x 10 ⁻³ ma R problem. ³ He is very rare on Eart uld be collected from	oton. cted with ss into energy. h.
		n	Jupiter's	atmosphere.	
Dec 3, 2004	About 450:1	Jooney	Dec 3, 2004	Astronomy 230 Fall 2004	

Project Daedalus

- Daedalus would accelerate for 4 years, then coast for 50 years to reach Barnard's star.
- At blastoff the mass would be 54,000 tons, of which 50,000 would be fuel.
- That's an $R_M = 12$.
- The fuel would be in pellets that enter the reaction chamber 250/sec.
- Sophisticated robots needed for repair.

http://www.daviddarling.info/encyclopedia/D/Daedalus.html

L.W. Looney

Project Daedalus

- For dust erosion at 0.12c, requires a beryllium erosion shield 7mm thick and 55 meters in diameter.
- Once it reached Barnard's star, it would disperse science payload that would study the system.
- Would transmit back to Earth for 6-9 years.
- So does not require a return trip.

http://www.daviddarling.info/encyclopedia/D/Daedalus.html

L.W. Looney

Dec 3, 2004

Astronomy 230 Fall 2004

PT

Dec 3, 2004

Project Daedalus

Astronomy 230 Fall 2004

- Still requires more technology.
- How to get the deuterium and ³He close enough to fuse in the first place.
- This requires a hot, compressed collection of nuclei that must be confined for long enough to get energy out
 - It's like "herding cats"
- As we have discussed, nuclear fusion reactors on the ground are trying to use magnetic (heavy containers) confinement [MCF] or inertial (high powered lasers) confinement [ICF].
- Daedalus would have to use a hybrid of the two.

MTF: Magnetic Target Fusion

CIC-1/20-0126 (11-00

- You make a small, magnetically confined plasma (like MCF) then compress it to thermonuclear conditions with a magnetically driven imploding liner (sort of like ICF).
- Being studied at numerous research centers for possible ground use too.

Fusion Rockets

- We are still not there.
- Fusion is not viable on the ground or in rockets at this time.
- MTF and other methods are being worked on, but it can easily take decades before the technology is feasible.

Ion Drives

- These are not science fiction.
- A propellant system: "stuff" is thrown backwards propelling the ship forwards.
- They eject a beam of charged atoms out the back, pushing the rocket forward
 - Kind of like sitting on a bike and propelling yourself by pointing a hairdryer backwards

	Ion Drive	Ì		DS1	4
Dec 3, 2004	Astronomy 230 Fall 2004	L.W. Looney	Dec 3, 2004	Astronomy 230 Fall 2004	L.W. Looney

- First successful used in Deep Space 1, which took the closest images of a comet nucleus (Comet Borrelly).
- The engine worked by ionizing xenon atoms, then expelling them out the back with strong electric fields.
- The only waste is the propellant itself, which can be a harmless gas like xenon.
- But, requires energy input to power electric field which pushes the ions out the back
 - Solar cells usually provide power.

Astronomy 230 Fall 2004

- DS1 only used 81.5 kg of xenon.
- Thrust of engine is only about as strong as the weight of a piece of paper in your hand!
 - If you keep pushing lightly, you will keep accelerating, so after time you can build up speed
 - DS1 eventually reached velocity of 4.5 km/s (10,000 mph!)
 - Remember fastest space vehicle is Pioneer which is still going about 12km/s
- Not useful for missions that need quick acceleration
- But, more efficient than chemical ٠
 - Can achieve 10 times greater velocity than chemical!

http://antwrp.gsfc.nasa.gov/apottap060720.htm

Dec 3, 2004

Our Problem

- For interstellar travel with any propellant, you must carry with you the stuff that you eventually shoot out the back
 - Fine for Saturn V rocket and "short" lunar missions
 - Bad for interstellar travel
 - Maybe even prohibitive
- But, it is unlikely that the methods discussed up to now will enable us to reach the stars in any significant manner.
- It is unlikely, therefore, that ET civilizations would use these methods
- We may do better, though...with the biggest bang for the buck.

Antimatter

- The most energy you can get from a hunk of mass is extracted not by
 - Chemical Burning
 - Nuclear fission or fusion
 - Pushing it in an ion drive
- The most efficient way to get energy from mass is to annihilate it!
- When they annihilate all of their mass is turned into energy (E=mc²), eventually photons.

Dec 3, 2004

L.W. Looney

Anti-Anti-matter

Astronomy 230 Fall 2004

- But, antimatter does not normally exist.
- We have to make it.

Dec 3, 2004

- We can make small quantities in giant particle accelerators, but total amount ever made is on order of a few nanograms.
- Would take 200 million years at current facilities to make 1kg!
- The amount of antimatter made in Illinois at Fermi-Lab in 1 day can provide energy to light a 100 W light bulb for ~3 seconds. If 100% efficient.
- And right now it takes about 10 billion times more energy to make antiprotons than you get from their annihilations.

Anti-Hydrogen from CERN.

Storage Issues

Astronomy 230 Fall 2004

- Antimatter can be like battery- storing energy.
- But antimatter *must* not touch matter!
- So, you have to store it without touching it
- Can be done by making electromagnetic "bottle" which confines particles with electric and magnetic force fields

Astronomy 230 Fall 2004

http://news.bbc.co.uk/2/hi/science/nature/2266503.stm L.W. Looney http://www.engr.psu.edu/antimatter/ Dec 3, 2004

L.W. Looney

Nonetheless

Propulsion
Chemical

Electromagnetic

Nuclear Fission

Nuclear Fusion

propulsion

Antimatter

•

Dec 3, 2004

Specific Impulse [sec]

600 - 3000

500 - 3000 5000 - 10000

1000 - 100000

Antimatter propulsion has potential to be about 10

Astronomy 230 Fall 2004

• Antimatter has potential to be about 1000 times more powerful than chemical combustion

ICAN

tter Nuclear or Mars Mission

L.W. Looney

Ion Compressed Antimatter Nuclear Designed at Penn State for Mars Mission

• Mixture of antimatter and fusion pellets.

• Still for interstellar trips, we got a problem with carrying around the fuel.

times more powerful than fusion

- Edward Purcell thought about antimatter interstellar travel, and found even that to be lacking!
- The lightest mass U.S. manned spacecraft was the Mercury capsule– the "Liberty Bell". It weighed only 2836 pounds (about 1300kg) and launched on July 21, 1961.
- It would still take over *50 million kg* of antimatter fuel to get this tin can to the nearest star <u>and back</u>.

L.W. Looney

Lose the Fuel, Fool

- What if we didn't have to carry all the fuel?
- One option is the Bussard ramjet.
- The spacecraft collects its own fuel as it moves forward.
- But, in interstellar space there is only 1 atom/cm3.

http://www.sternenreise.de/weltraum/antrieb/bussard.htm

Dec 3, 2004

Astronomy 230 Fall 2004

http://lsda.jsc.nasa.gov/images/libertybell.jpg 004 http://www.craftygal.com/arLhiWs/sLpQaBGNable0900.htm

Dec 3, 2004

Lose the Fuel, Fool

- The scoop would have to be 4000 km in diameter (size of US).
- Or magnetic fields to collect the material.
- But would mostly be low-grade hydrogen fuel, so it is a technological step ahead of what we already discussed.
- Could reach speeds close to 0.99c.

http://www.sternenreise.de/weltraum/antrieb/bussard.htm

Astronomy 230 Fall 2004

L.W. Looney

COSMOS 1

- Expected to be launched in March 1, 2005!
- First solar sail spacecraft (and private!)
- Built in Russia at Babakin Space Center
- Will be launched from a Russian nuclear sub.
- Will have 8, 15m sails
 - 100kg payload (small, but first step!)
- It would take about 1,000 years for a solar sail to reach one-tenth the speed of light, even with light shining on it continuously.
- It will take advanced sails plus a laser power source in space that can operate over interstellar distances to reach one-tenth the speed of light in less than 100 years.

L.W. Loonev

Light Sails

- Imagine a space sailboat but with ٠ photons of light hitting the sails and pushing it forward.
- No need to carry propellant, distant ٠ laser could be used to illuminate sails.
- Photons have energy but no rest • mass.
- But, they do carry momentum!
 - It is related to the energy such that p = E / c
- So, such a craft is not propelled by solar winds!
- But by light bouncing off, like a mirror.

Dec 3, 2004

L.W. Looney

Warp Drives

Astronomy 230 Fall 2004

- Again, science fiction is • influencing science.
- Due to great distance between the stars and the speed limit of c, sci-fi had to resort to "Warp Drive" that allows faster-than-light speeds.
- Currently, this is impossible.
- It is speculation that requires a revolution in physics
 - It is science fiction!
- But, we have been surprised before...
- Unfortunately new physics usually • adds constraints not removes them.

http://www.filmjerk.com/images/warp.gif

Dec 3, 2004

Einstein Is Warping My Mind!

Dec 3, 2004

- Einstein's General Relativity around 1918
- Space and time were reinterpreted
- No longer were they seen as immutable, constant properties
- Space itself can be "warped" by mass.

Special Relativity Summary

- Length of space depends on observer's speed.
- Length of time depends on observer's speed.
- Mass depends on observer's speed.

4

Astronomy 230 Fall 2004

Dec 3, 2004

General relativity

Astronomy 230 Fall 2004

- Gravitational fields can also change space and time
 - A clock runs more slowly on Earth than it does in outer space away from any mass, e.g. planets.
- Einstein revealed that gravity is really 'warped' space-time.
- A black hole is an extreme example.

L.W. Looney

General relativity

- Rotating black holes may form wormholes to "elsewhen" but they are thought to be short-lived.
- Researchers are considering stabilizing them with exotic matter.
- What if it were possible to create a localized region in which space-time was severely warped?
 - A car has a speed limit on a road, but what if you compress the road itself?

Quantum field theory

- The subatomic world is not a world of billiard ball-like particles
- "Empty space" is full of waves/particles popping in and out of existence
 - Like a choppy sea, "virtual particles" are born and interact for an allowed window of time
- This sea of "virtual particles" that inhabits space-time can be a source of energy
 - This is real physics, not Sci-fi

Dec	3.	2004
	- ,	

Astronomy 230 Fall 2004

Dark Energy

- Imagine harnessing the power of dark energy (which • seems to occupy all space) to form an anti-gravity generator?
- It is crucial to investigate new ideas with open minds and freedom.
- Right now, we really don't have a firm idea for any new propulsion system (space warp-driven propulsion, etc.).
- But, be patient a long wait may be ahead
 - Hundreds of years?
 - Thousands of years?
 - Remember that the civilization lifetime can be millions of years!

Quantum field theory

- In 1948, Hendrik Casimir predicted a weak attraction between two flat plates due to the effect of the sea of virtual particles.
- Two 1 meter plates placed a micron apart, would have 1.3mN of force. This is like a weight of 130 mg.
- But it is force from nothing!
- Maybe this effect can create a subtle propulsion system?


```
Dec 3, 2004
```

L.W. Looney

Astronomy 230 Fall 2004

ET's Spacecraft?

- We really don't know yet how to get to the stars realistically, so we don't know what advanced civilizations might use.
- But it is
 - Smarter
 - Cheaper
 - still very informative and
 - Realistic
 - to send an unmanned probe into stars first
 - Lighter payload!
- Self-replicating probes?

Dec 3, 2004

L.W. Looney

Long Haul Space Travel

- Spacecraft that we can envision easily would take a lifetime to get to the nearest star.
- Colonizing missions would be multi-generation missions.
- Space colonies with propulsion systems would slow down things, so maybe it would take 1000 yrs.
- How many of you would sign up today?

Astronomy 230 Fall 2004

L.W. Looney