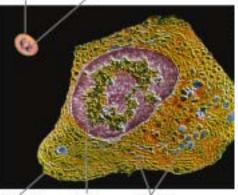


Life


If we took all the biomass of all the animals, and all the biomass of all the viruses, bacteria, protozoa, and fungi- who weighs more?

Classification of Life

- 1. Prokaryotes
 - No cell nucleus- DNA floating around
 - Always single-cell creatures like bacterium
 - Came first
 - Outnumber and outweigh eukaryotes
- 2. Eukaryotes
 - Have a cell nucleus, a membrane to protect the DNA
 - Basis of all multi-cell creatures
 - Also some single-cell creatures like amoebas.
 - DNA arranged into chromosomes in nucleus-23 pairs for humans.

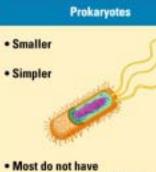
Prokaryette call Nucleoid region

Estaryotic cell

Oct 18, 2004

Astronomy 230 Fall 2004

L.W. Looney

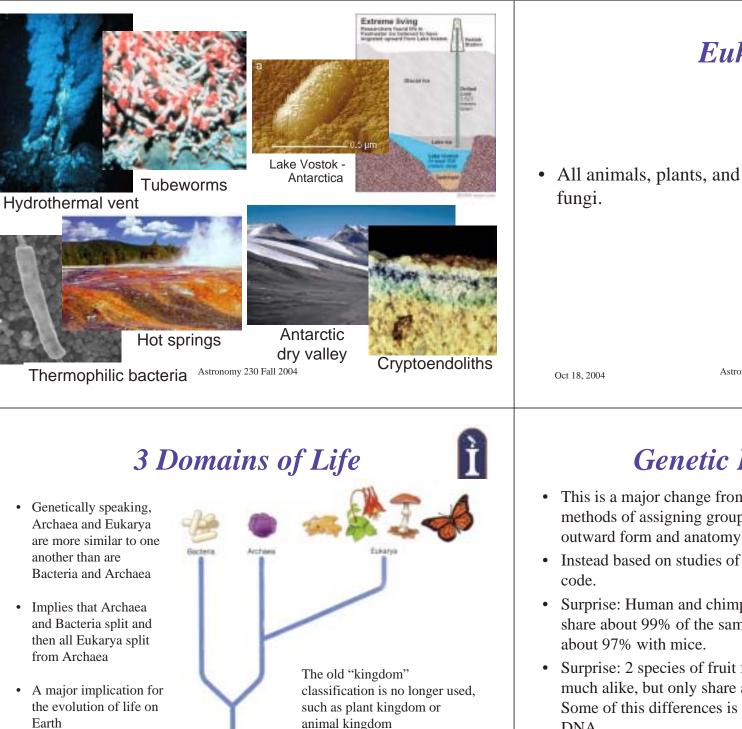

Not your Parent's ET--**Extremophiles**

- These are microbes that life in the most extreme places on Earth.
- Temperature extremes
 - boiling or freezing, 100° C to -1° C (212F to 30F)
- Chemical extremes
 - vinegar or ammonia (<5 pH or >9 pH)
 - highly salty, up to ten times sea water
- They are exciting, as they are the most likely candidate for extraterrestrial life.
- Probably dominated life on early Earth until fairly recently.

Astronomy 230 Fall 2004

Prokaryotes

- Divided into 2 domains:
- Eubacteria or "true" bacteria
- Archea
 - Thought to be oldest life forms.
 - Often found in harsh environments: hot springs, undersea vents, salty seashores, etc, which were probably more common on the early Earth.
 - Some live deep underground, and may represent a significant fraction of the Earth's biomass.
 - Some evidence that ancient organisms were heat-lovers (maybe)



- membrane-enclosed organelles
- Bacteria and archaea

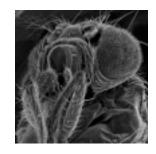
Engright & 2014 Fearger Educator, Inc., publishing in Bergerin Commign.

Oct 18, 2004

Eukaryotes

Eukaryotes Larger More complex Membrane-enclosed organelles · Protists, plants, fungi, animals

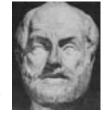
Oct 18, 2004


fungi.

Astronomy 230 Fall 2004

L.W. Looney

Genetic Relations


- This is a major change from the old methods of assigning groups based on outward form and anatomy.
- Instead based on studies of the genetic • code.
- Surprise: Human and chimpanzees share about 99% of the same DNA, and about 97% with mice.
- Surprise: 2 species of fruit fly look very much alike, but only share about 25%. Some of this differences is due to junk DNA.

oarlest

Changes?

- Today's view: evolution is the most important and unifying property of life.
- <u>Anaximander</u> (c. 610–547 BC): life arose in water and gradually became more complex
- <u>Empedocles</u> (c. 492–432 BC): survival of the fittest (but, "*a good idea stated within an insufficient theoretical frame loses its explanatory power and is forgotten*" by Hans Reichenbach)
- <u>Aristotle</u> (384–322 BC): species are fixed and independent of each other \rightarrow evolution discarded for 2000 years
- Fossil record: slowly broke down the Aristotelian theory

Oct 18, 2004

Other Evidence:

Islands, in

- Adapted species in

particular finches

- Artificial breeding

of house/farm

animals and vegetables

DNA is really the

evolution requires both heredity and

natural selection, but

mechanism of

enviroment

Oct 18, 2004

the Galápagos

```
Astronomy 230 Fall 2004
```

Filling the Niche with Finch

Sharp-baakad provent firsh

ground fired

Madture Inc.

Large crieftal

Cantus

the linch

Common ancastor of Galapaces freches

paint finch

ptound finch

Large

tree frich

L.W. Looney

Ť

Martin ato

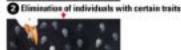
Intel Ench

inesoficeritat

Managing

Noodpeckar

finch


finds

For the Species Survival

Population with varied inherited trait

Reproduction of survivors

- Darwin (1809–1882) & Malthus (1766-1834):
 - Populations can grow faster than food sources can support them.
 - Creates a struggle for survival that can wipe out competitors.
 - Individual variations has advantages or disadvantages in the struggle for survival
 - Natural selection can create unequal reproductive success

O Increasing frequency of traits that enhance survival and reproductive success

Copyright © 2021 by Europeanin Currynings, an imprint of Addison Wesley

Oct 18, 2004

L.W. Looney

Mutant Sex

Astronomy 230 Fall 2004

- Mutations from changes in the bases of DNA.
- Usually copying errors, but also radiation– radioactivity, cosmic rays, chemical agents, or UV light.
- About 3 mutations per person per generation.
- Most mutations are neutral, changes in the *junk* DNA.
- Why is sex important to this class?

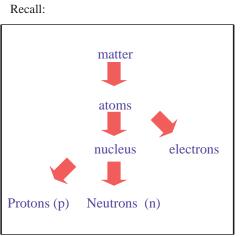
http://www.mutantx.net/features/press_vw_sexy.html

wagned through

L.W. Looney

Oct 18, 2004

Mutant Sex


- Sexual reproduction leads to greater genetic diversity- a difference between prokaryotes and eukaryotes?
- Asexual reproduction does not allow 2 new and beneficial mutations to combine.
- Blackberries have not changed much in 10 millions years, but sexual plants have produced: raspberries, thimbleberries, cloudberries, dewberries, etc.
- Sex is useful in the process, but the mutations are still key.

http://www.alcasoft.com/arkansas/blackberry.html

Oct 18, 2004	

Astronomy 230 Fall 2004

Radioactive Dating

L.W. Looney

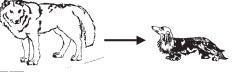
- Most atomic nuclei stable
- But some nuclei are *unstable*, *decay* to new nucleus
- "radioactive"

Example 1: Carbon C=6p

- Carbon-12: 6p+6n, stable
- Carbon-14: 6p + 8n, unstable (1/2 life of 5730 years)
- ${}^{14}C \rightarrow {}^{14}N$ (nitrogen)
- Nitrogen-14: 7p + 7n, stable

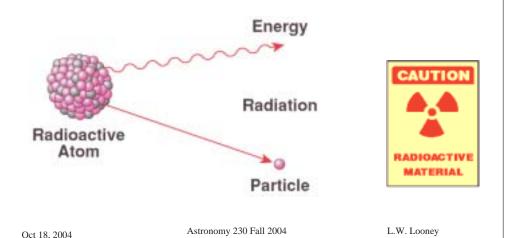
Example 2: Uranium U=92p • uranium-238: 92 p + 146 n (1/2 life of 4.5 billion years)

²³⁸U \rightarrow chain of decays \rightarrow ²⁰⁶Pb (lead)


Does it take a long time?

Cabbage, kale, kohlrabi, brussels sprouts, cauliflower and broccoli have same common ancestor– wild mustard. All bred by humans on a very short time scale.

This is selective breeding, but still the potential is in the DNA.



Or domestic lap dogs from wolves in about 5000 years. L.W. Looney

Radioactive Decay Examples

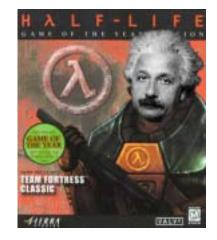
http://www.colorado.edu/physics/2000/isotopes/radioactive_decay3.html

The Law of Radioactive Decay

As radioactive "parent" decays, the number of decay product or "daughters" increases

Decay is "clock"

- each radioactive species has different "tick"
- rate= "half-life"


Oct 18, 2004

Decay Rule if start out with N parents, 0 daughters

	Time t since start	# parents	# daughters
	0	Ν	0
s has	t _{1/2}	¹ ∕2 N = half as much	¹∕₂ N have appeared
	2t _{1/2}	¹ /4 N = half again as much	³ ⁄4 N
	3t _{1/2}	1/8 N	7/8 N
	30t _{1/2}	About N/109	99.9999999% N
Astronomy	230 Fall 2004	I	L.W. Looney

Carbon-14

- Cosmic rays from space are constantly hitting the Earth.
- React with ¹⁴N in atmosphere to create ¹⁴C.
- Decays back to ¹⁴N with half life of 5730 years.
- But, there is an equilibrium in abundance
- In atmosphere the ¹⁴C is mostly in ¹⁴CO².

http://bbspot.com/Images/News_Features/2003/12/half-life.jpg

```
Oct 18, 2004
```

L.W. Looney

Carbon-14

- Plants take in ¹⁴CO² with the ¹²CO² and other animals eat the plants.
- So, every living creature has a equilibrium ratio of $^{14}CO^{2/12}CO^{2}$
- When the organism dies, the ${}^{14}C$ decays to ${}^{14}N$. By measuring how much ¹⁴C remains, you can date the fossil.
- This works well to about 60,000 years.
 - Viking remains in Newfoundland- 500 yrs before Columbus.
 - Shroud of Turin to 1330 AD

http://web.mit.edu/smcguire/www/newfoundland/newf16.html

Dating Rocks

Astronomy 230 Fall 2004

- First you ask them out?
- No, you need a radioactive decay that has a longer half-life than ¹⁴C.
- Potassium-argon
 - ⁴⁰K decays to ⁴⁰Ar with a 1200 Myr half-life.
- Uranium-lead
 - ²³⁵U to ²⁰⁷Pb with 700 Myr half-life.
- But these only work with volcanic layers.
- So, the ages of fossils are interpolated from • ages of volcanic layers above and below them.

Astronomy 230 Fall 2004

Oct 18, 2004

Era	Period	Myr Ago	Life Forms	Events
Cenozoic	Quaternary	2	H. Sapiens	Ice ages
	Tertiary	65	Primates	Extinction of Dinosaurs
Mesozoic	Cretaceous	136	Birds	S. Atlantic open to 1900 miles
	Jurassic	190		N. Atlantic open to 600 miles
	Triassic	225	Mammals	Continental drift
Paleozoic	Permian	280	Reptiles	Pangaea breaks up
	Carboniferous	345	Amphibians	Formation of coal
	Devonian	395	Insects	
	Silurian	430	Land Plants	
	Ordovician	500	Fish	
	Cambrian	543	Trilobites	
Precambrian		545	Small Shelly Fossils	
		580	Ediacarans	
		600-800	Multicellular life	Snowball Earth episodes
Oct 18, 2004		Astronomy 230 I	Fall 2004	L.W. Looney

Myr Ago	Era	Event
Now	Cenozoic	
	Mesozoic	
	Paleozoic	Macroscopic life/Snowball Earth
	Precambrian	
1000		Worm tracks
		Multicellular algae
		Eukaryotes certain
		Sexual reproduction
2000		Eukaryotes possible
	Protozoic	Oxygen-rich atmosphere
		Snowball Earth
		Formation of continents
3000	Archean	Life begins?
4000		Formation of Oceans
		Bombardment decreases
		Frequent impacts
	Hadean	Earth formed

Increase of Complexity

- Last table showed only the last 800 Myrs.
- More complex and intelligent organisms appeared later on.
- For many years it was thought that life originated in the Cambrian era, then Precambrian fossils were found.
- Then, it was realized that there were single-celled fossils that required microscopes.

Astronomy 230 Fall 2004

L.W. Looney

Concepts

Ì

- As prokaryotes are simpler than eukaryotes, we expect them to exist first.
- Identifying fossil prokaryotes is difficult: they're tiny!
- But there is enough evidence that before 1500-2000 Myrs ago there are only prokaryotes fossils.
- Note: the oldest fossils (3800 Myrs ago) are under dispute, but the 2800 Myr old fossils are universally accepted.
- All of the macroscopic life only arose in the last 600 Myrs– 1/6th of the history of life on Earth.

Making Oxygen!

- The early prokaryotes played a crucial role for life on Earth by producing oxygen through photosynthesis.
- Cyanobacteria (was called blue-green algae) changed the world!
- Lived in colonies that formed mats or films, growing into large structures called stromatolites.
- Still around, but much more common before 700 Myrs ago.
- That allowed a new energy extraction method
 - Aerobic (using oxygen) metabolism
 - More complex life.
 - Created ozone layer (dry land now an option).

Oct 18, 2004

Astronomy 230 Fall 2004

Summary

- This following slides are from: http://www.udayton.edu/~INSS/
- Nice timeline of life on Earth.

Relationship to ETs

- Would evolution on other planets have a similar time-scale?
- Evolution is not a deterministic process.
- Selection seems to mostly luck, rather than adaptation.
- On the other hand, many traits have developed in several lineages– warm blood and eyes.
- Some say that intelligence seems to increase in many lineages, so it is likely that if live exists then intelligent life exists.
- On the other hand, the plant kingdom never developed neurons.

Oct	18.	2004

Astronomy 230 Fall 2004

L.W. Looney

L.W. Looney