

Amino Acids

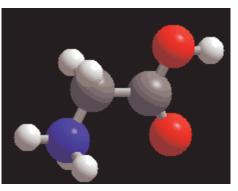
R side chain

L.W. Looney

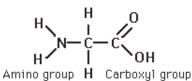
H₂N—C —COOH

Н

- Are the monomers from which proteins (polymers) are made-building blocks.
- Combinations of the amino acids make the millions of proteins needed- only 20 amino acids.
- The order of the amino acids determine the formed protein.
- Carboxylic acid group
 - Amino group
- Side group R gives unique characteristics

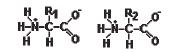


ASUOIIOIIIY 250 Faii 2004


- Amino acids are monomers •
- Proteins are polymers of amino acids of a certain type. A number of specific amino acids "hook up" to form a specific protein.
- As a chain grows, there is always a hook (the amino group) on one end and an eye (the carboxyl group) on the other.
- Really a peptide bond. •

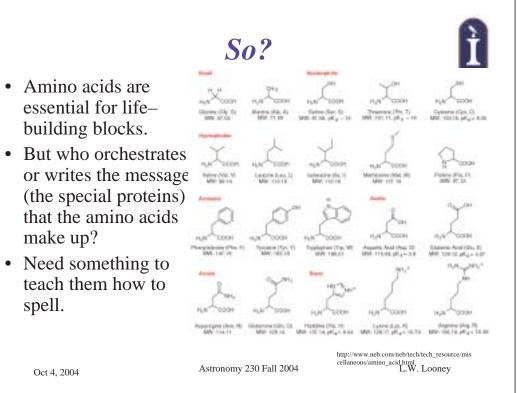
Glycine

- Simplest amino acid. Just an H in the R position.
- Main ingredients are HONC- other amino acids contain Sulfur (S) as well.

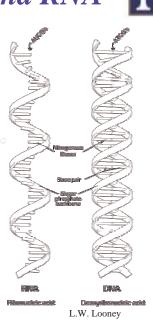

```
Oct 4, 2004
```

Astronomy 230 Fall 2004

L.W. Looney


Peptide Bond

- When in a solvent (water), the OH loses an H, and the NH₂ gains an H.
- We have positive and negative attracted to each other.
- A peptide bond is formed! (Just think of the hook and eye.)
- Good bonding is very important to life- some of the nucleic acids can be huge (up to 10^{10} atoms)


amino acid 1 amino acid 2

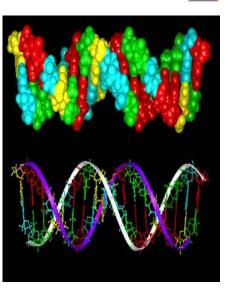
Nucleic Acid: DNA and RNA

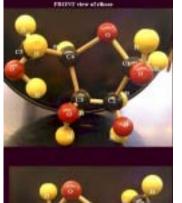
- Two types of nucleic acid. •
- A polymer built up from monomers.
- RNA (RiboNucleic Acid) is usually a long strand
- DNA (DeoxyriboNucleic Acid) is the double helix-visualize as a spiral ladder.
- These molecules carry the genetic information of the organism- the message that gets coded into the amino acid chain.
- It is very much like computer code in • many ways- and teaches them to spell useful words.

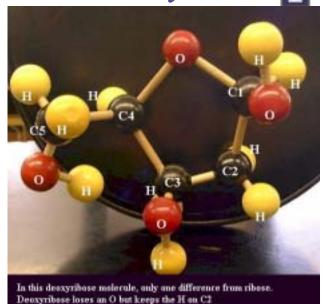

```
Oct 4, 2004
```

Astronomy 230 Fall 2004

Sugars: Ribose or Deoxyribose



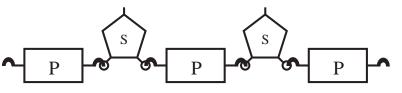

We will represent the sugar molecule (either ribose or deoxyribose) as a pentagon with two eyes.


DNA / RNA

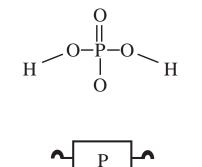
- The origins of DNA and RNA are mysterious and amazing
- DNA/RNA are complex: Built from three basic types of monomers
 - 1. Sugar (deoxyribose or ribose)
 - 2. A phosphate PO_4
 - 3. One of four "nitrogenous bases"
 - Adenine (A) •
 - Guanine (G) .
 - Cytosine (C)
 - Thymine (T) in DNA / Uracil (U) in RNA
 - These four monomers are collectively called "nucleotides"

Sugars: Ribose or Deoxylribose

BACK view of sheet



- Make the sides of the twisted DNA ladder structure.
- Sugars and phosphates connect up in alternating bonds. P-S-P-S-P-S-P
- These are phosphodiester bonds.



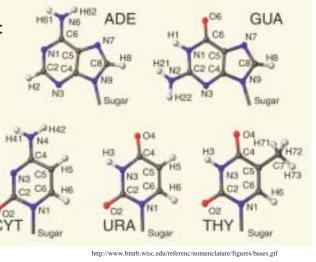
http://www.dscc.edu/bwilliams/Biology/biology1molemodels.htm

Phosphates

- Is often referred to as phosphoric acid.
- Makes five bonds with oxygen.

Oct 4, 2004

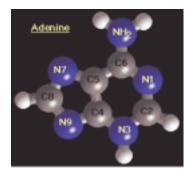
Astronomy 230 Fall 2004

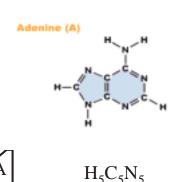

L.W. Looney

And the Bases

A

5 types in 2 groups (based on structure):


- Purines:
 - Adenine
 - Guanine
- Pyrimidines:
 - CytosineUracil
 - Thymine



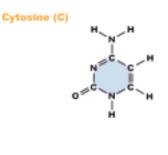
Purines: Adenine

• 5-sided ring built on the side of a 6-sided ring.

Adenine

Oct 4, 2004

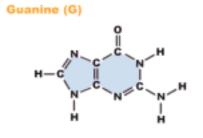
http://resources.emb.gov.hk/biology/english/inherit/genetic s.html L.W. Looney http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.gif

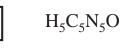

Pyrimidines: Cytosine

Astronomy 230 Fall 2004

• 6 sided rings (without a 5 sided ring)

 $H_5C_4N_3O$


Cytosine Astronomy 230 Fall 2004

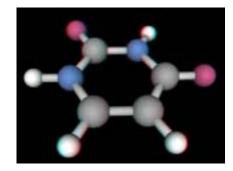

http://resources.emb.gov.hk/biology/english/inherit/genetic s html http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.git

Purines: Guanine

• 5-sided ring built on the side of a 6-sided ring.

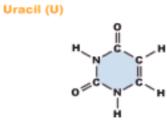
Guanine Astronomy 230 Fall 2004

http://resources.emb.gov.hk/biology/english/inherit/genetic s.html L.W. Looney http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.gif


Pyrimidines: Uracil

Uracil

Astronomy 230 Fall 2004

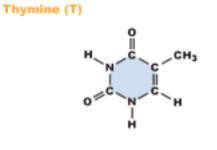

• 6 sided rings (without a 5 sided ring)

For RNA

Oct 4, 2004

Oct 4, 2004

http://nautilus.fis.uc.pt/molecularium/stereo/ http://dlm.tmu.edu.tw/phase2/glossary/image/adenine.gif L.W. Looney



Pyrimidines: Thymine

Ì

• 6 sided rings (without a 5 sided ring)

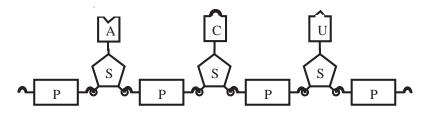
 $H_6C_5N_3O_2$

For DNA

Oct 4, 2004

Thymine Astronomy 230 Fall 2004

http://resources.emb.gov.hk/biology/english/inherit/genetic s.html http://dlm.tmu.edu.tw/phas42/Wss4z9000gy/adenine.gif


Meaning in Mystery

FIRST		SECOND LETTER			
LETTER	U	С	A	G	1 LETTER
U	Pheny la lanine	Serine	Tyrosine	Cysteine	U
	Pheny la lanine	Serine	Tyrosine	Cysteine	С
	Leucine	Serine	Stop	Stop	A
	Leucine	Serine	Stop	Tryptophan	G
с	Leucine	Proline	Histidine	Arginine	U
	Leucine	Proline	Histidine	Arginine	С
	Leucine	Proline	Glutamine	Arginine	A
	Leucine	Proline	Glutamine	Arginine	G
A	Isoleucine	Threonine	Asparagine	Serine	U
	Isoleucine	Threonine	Asparagine	Serine	С
	Isoleucine	Threonine	Lysine	Arginine	A
	(Start)	Threonine	Lysine	Arginine	G
L	Methionine				
Г					
G	Valine	Alanine	Aspartate	Glucine	U
	Valine	Alanine	Aspartate	Glycine	С
-	Valine	Alanine	Glutamate	Glycine	A
	Valine	Alanine	Glutamate	Glycine	G

Making RNA Mean Something

- Schematic of an RNA molecule.
- This segment can be read from left to right as ACU- called a <u>codon</u> (a three letter word, so to speak)
- Can be translated to a specific genetic code– this corresponds to the amino acid Threonine. GGU is gylcine.
- By building up these amino acid codons, we can spell out (and thus construct) a protein.

Oct 4, 2004

Astronomy 230 Fall 2004

Overconstrained

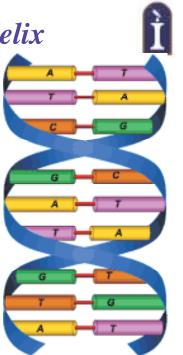
L.W. Looney

- 4 options for each letter in the Codon
- 4 x 4 x 4 = 64 options (can think if it as bits)
- But only 20 amino acids -> over constrained
- 4 x 4 = 16 wouldn't work.
- Life picked the next highest number and copes.

FIRST	SECOND LETTER				
LETTER	U	C	A	0	LETTER
Г	Pheng lalanine	Sertor	Tyrosine	Custeine	U
U	Phenylalanine	Serine	Tyrosine	Cysteine	C
	Leucine	Sentre	Stop	Shop	4
	Leucine	Serine	Stop	Tryptophan	6
	Leucine	Proline	Histidine	Anginine	
с		Proline	Histidine	Anginine	U
	Leucine	Proline	Glutamine		C
	Leache	Proline	Glutamine	Anginthe Anginine	6
L.	LPUCINF	Prome	Grataman	wyane	0
Г Г	Isoleycine	Threavine	Asparagine	Serine	U
	Isolieuorine	Threanine	Asparagine	Serine	C
4	toolauorine	Threanine	Lysine	Anginine	A
	(Start)	Threasine	Lycine	Anginine	0
L.	Methionine				
Г	11.11.		1		
	Valine	Alanine	Aspartate	Glucine	U
0	Valine	Alarvine	Aspartate	Glycine	C
	Valtre	Alarine	Outamate	Olyctre	A
L	Valloe	Alanine	Glutamate	Glycine	0

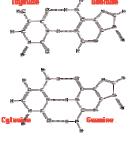
DNA

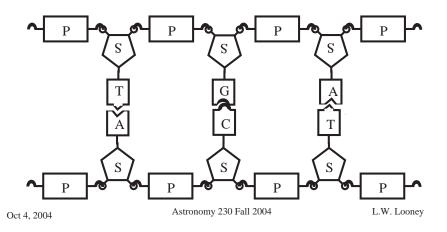
- For life more complicated than viruses, the genetic code is stored in DNA.
- Differs from RNA in a few ways: uses deoxyribose sugar rather than ribose sugar and it uses thymine instead of uracil.
- Forms the double strand where two complementary bonds are held together with weaker hydrogen bonding– allowing easier separation.
- In that case, bases form unique pairs:
 - AT, TA, GC, CG


Oct 4, 2004

Astronomy 230 Fall 2004

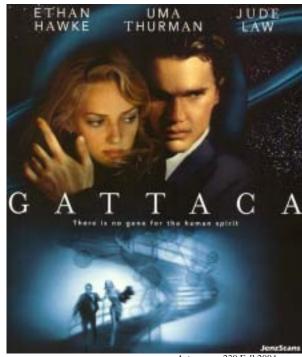
L.W. Looney


The Double Helix


- Resembles a twisted ladder
- The sides of the DNA ladder are made of the sugar and phosphate.
- The steps or rungs of the ladder are composed of one of the 4 nitrogenous base pairs.
 AT, TA, GC, CG
- In other words, if you know the sequence on one side, you can deduce the sequence on the other side.

DNA

A codon of DNA: AT, CG, TA
purine to pyrimidine connections


The Double Helix

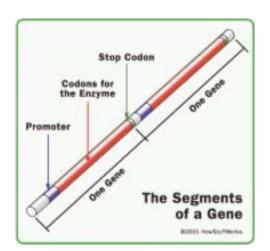
- The ladder is twisted into the helix shape since the hydrogen bonds are at an angle.
- 3 pairs make up a codon, like RNA (4x4x4 = 64)
- Each codon is info on the amino acid, but only 20 of those– again over constrained.

Astronomy 230 Fall 2004


```
Oct 4, 2004
```

Astronomy 230 Fall 2004

My Old Blue Genes


L.W. Looney

- Different organisms have different number of genes.
- Tobacco mosaic virus has 4 genes.
- A small bacterium has about 1000 genes- average sized bacterium has 4000 genes.
- The Human Genome Project found 30,000 to 40,000 genes
- If you took all of the nucleic acid in one human cell and stretched out the long sequence, it would be more than a meter long!
- Human cells have 3×10^9 base pairs, but 98% of it has no obvious function, and 99.9% is the same for all humans.

http://images.encarta.msn.com/xrefmedia/shareme /targets/images/pho/t373/T373681A.jpg

- Each codon specifies an amino acid. and a sequence of condons specifies a protein or enzyme.
- E. coli bacterium has about 4,000 genes, and at any time those genes specify about 1,000 enzymes. Many genes are duplicates.


```
Oct 4, 2004
```

L.W. Looney

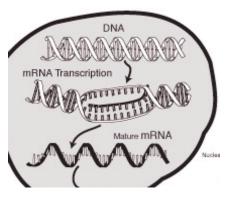
• Best way to package DNA is in chromosomes-DNA wrapped around proteins,

Astronomy 230 Fall 2004

Chromosomes

- Humans have 23 sets of chromosomes (total of 46).http://gslc.genetics.utah.edu/units/basics/tour/chromosome.swf
- Each ranges from 50 million to 250 million base pairs
- For each set, you got half from each parent.

Oct 4, 2004



Astronomy 230 Fall 2004

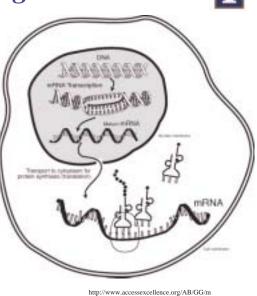
L.W. Loonev

DNA: Message in a Cell

- A cell is informed it needs a enzymecall it Z.
- Other enzymes in nucleus unravel and separate the easily broken DNA at the site where the gene for making that enzyme in encoded.
- Transcription of the gene is made via complementary bases and are assembled in a messenger RNA or mRNA.
- DNA zips itself back together.
- The mRNA (a series of codons) moves from the nucleus to the cytoplasm.

http://www.accessexcellence.org/AB/GG/n RNA.html L.W. Looney

Oct 4, 2004


Astronomy 230 Fall 2004

Reproduction

- DNA unzips itself, with appropriate enzyme. •
- Each strand acts like a template for making a new strand.
- As each side is complementary, the molecule is successfully reproduced into 2 copies.
- For dividing cells, a copy goes to each daughter cell.
- Really, the process includes many special enzymes, so sometimes errors can occur.
- Still, very efficient
- DNA is the stuff from which all life is made.
- Probably not the method of the first life- too complicated. ٠

DNA: Message in a Cell

- Translation is the next step. •
- A ribosome (the site of the protein synthesis) recognizes the mRNA by a special base sequence that attaches.
- The amino acids are built up from transfer RNA (tRNA) that move along the mRNA.
- The tRNAs have anticodon and carry amino acids.
- The chain of amino acids • grows until the stop codon signals the completion of enzyme Z.

Oct 4, 2004

RNA.html L.W. Looney

Molecular Basis of Life

Astronomy 230 Fall 2004

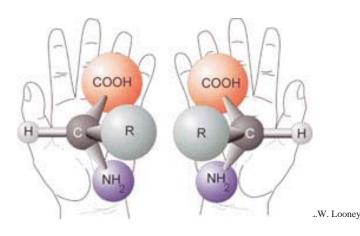
- 1. Atoms needed are H,O,N, and C with small amounts of P and S.
- 2. 2 basic molecules are essential for life: proteins and nucleic acids
- 3. Both are polymers- made of simpler monomers that make up the "alphabet" or code of life. These direct the transcription and translation of the proteins from the code.
- 4. Proteins and nucleic acids are closely linked at a fundamental level. Communicating through the genetic code that must have originated very early. In most cases, the same code is used by different messages for chicken or shark or human.

Molecular Basis of Life

Ì

- 5. #4 rises an important question.
 - Proteins synthesis must be directed by nucleic acids, but nucleic acids transcription requires enzymes (proteins).
 - Chicken or the egg problem?
 - Did proteins arise on Earth first and give rise to nucleic acids, or vice versa?

Oct 4, 2004


Oct 4, 2004

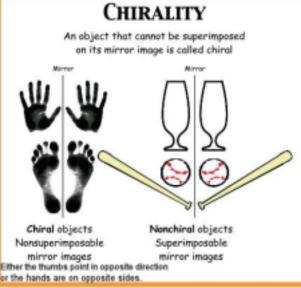
Chirality

Astronomy 230 Fall 200

Handedness: Some molecules exist in two versions based on the position of the bonds. One molecule is the mirror image of the other, but they are not similar.

Molecular Basis of Life

- 6. Careful to distinguish DNA from RNA. RNA probably developed first. Still, a related question is how did the connection between RNA/DNA and the connection with Life's genetic code originate?
- 7. Also, there are some instances of a few organisms where there are small differences in the code of life. The code has evolved, albeit very slightly, since the last common ancestor of all life.
- 8. This leads us to consider the chemical basis of life, implying a tendency toward greater complexity.


Oct 4, 2004

Astronomy 230 Fall 2004

L.W. Looney

-

tp://universe-review.ca/I15-32chirality.jpg W. Looney

We are Left-Handed Based

- Amino acids in non-biological situations are mixtures of both, but in life only left-handed molecules are used.
- Why? We don't know.
- Sugars in life are right-handed
- Suggests a common ancestor for life.
- The opposite should have worked just as well, and this arrangement probably arose out of chance. Once a preponderance of one chirality occurred it was replicated
- An ET organism may be made of the same stuff, but if they are made of right-handed amino acids, they couldn't eat our food. Bummer.

Oct 4, 2	2004
----------	------

Astronomy 230 Fall 2004

L.W. Looney

Chemical Evolution

- Chemical basis of life obviously crucial.
- Apparently evolution of life is a continuation of tendencies toward greater complexity
- Chemical evolution has 3 steps:
 - Synthesis of monomers
 - $-\,$ Synthesis of polymers from the monomers
 - Transition to life.

From Space?

- The Murchison meteorite (Australia 1969) contained approximately even amount of left and right amino acids
- 70 different amino acids were found in it, but only 6 are used in living organisms.
- New results show that 4 of the amino acids had a slight excess of left-handed types.

Oct 4, 2004

Astronomy 230 Fall 2004

First Life

- We currently think that life appeared on Earth around 3.8 billion years ago, or only 700 million years after the formation of the Earth.
- That is about the same time as the heavy bombardment ended. So, that means life was fastperhaps only a few 10-100 million years from sterile planet to party town.

if y

http://youconnect.canon-europe.com/swedish/2003-10/images/earth/love_parade.gif Oct 4, 2004 Astronomy

Synthesis of Monomers

- Life arose under the following conditions
 - Liquid water
 - Some dry land
 - A neutral or slightly reducing atmosphere (This is somewhat new). Remember no OXYGEN.
 - Reducing has elements that *give up* electrons, e.g. hydrogen. A good example is the atmosphere of Jupiter: CH₄, NH₃.
 - Oxidizing has elements that *take* electrons, e.g. oxygen. A good example is the atmosphere of Mars or modern Earth.
 - Neutral is neither.
 - Energy sources, including UV light, lightning, geothermal.

0 / 4 2004	
Oct 4, 2004	

Astronomy 230 Fall 2004

L.W. Looney