#### Astronomy 210



#### Outline



This Class (Lecture 33):

Life and Death of Other Stars

Stardial 2 is available.

Next Class:

Supernovae and Neutron Stars

Apr 15, 2005

Astronomy 210 Spring 2005



Apr 15, 2005

Astronomy 210 Spring 2005

#### Evolutionary Path of a Solar-Mass Star



#### Evolutionary Path of a High-Mass Star





### Life Fast, Die Young



- High-mass stars: "gas guzzlers"
  - Very bright
  - Consume hydrogen fuel supply very quickly
  - Only live for millions of years on the main sequence

| TABLE 11-1             | Main-Sequence Lifetimes    |                            |                                                  |                   |
|------------------------|----------------------------|----------------------------|--------------------------------------------------|-------------------|
| Mass (M <sub>⊙</sub> ) | Surface<br>temperature (K) | Luminosity (L $_{\odot}$ ) | Time on main sequence<br>(10 <sup>6</sup> years) | Spectral<br>class |
| 25                     | 35,000                     | 80,000                     | 3                                                | 0                 |
| 15                     | 30,000                     | 10,000                     | 15                                               | В                 |
| 3                      | 11,000                     | 60                         | 500                                              | A                 |
| 1.5                    | 7,000                      | 5                          | 3,000                                            | F                 |
| 1.0 (Sun)              | 6,000                      | 1                          | 10,000                                           | G                 |
| 0.75                   | 5,000                      | 0.5                        | 15,000                                           | K                 |
| 0.50                   | 4,000                      | 0.03                       | 200,000                                          | M                 |

Apr 15, 2005

Astronomy 210 Spring 2005

#### And when the Hydrogen Runs out?

• Similar to lower-mass stars in the first few stages

• When the hydrogen supply runs out the core starts to contract

 Hydrogen shell burning (around the helium core) starts

• The outer envelope expands quickly becoming a red supergiant

Apr 15, 2005



Astronomy 210 Spring 2005

# The Supergiant Phase



- Outer envelope of the star grows larger and cooler
  - Up to 5 AU in size!
  - Unlike a low mass star, brightness does not increase dramatically
- Eventually, core is hot enough that it can fuse helium atoms together (non degen gas, so no flash)
  - Star contracts and heats up
  - Now a blue supergiant



# Massive Stars: Cycles of Fusion



- Helium fusion is not the end for massive stars
- Cycles of core contraction, heating, ignition, burning
- Ash of one cycle becomes fuel for the next
  - C+He ⇒ O
  - O+He ⇒ Ne
  - ... Up to iron
- · Onion-skin like structure develops in the core



Astronomy 210 Spring 2005

### Iron - The End of the Road



- Supergiants "burn" heavier and heavier atoms in the fusion process
- Each stage faster than the last
- After iron no fuel left!
  - It requires energy to produce heavier atoms

| Stage     | Temperature   | Duration     |  |
|-----------|---------------|--------------|--|
| H fusion  | 40 million K  | 7 million yr |  |
| He fusion | 200 million K | 500,000 yr   |  |
| C fusion  | 600 million K | 600 yr       |  |
| Ne fusion | 1.2 billion K | 1 yr         |  |
| O fusion  | 1.5 billion K | 6 mo         |  |
| Si fusion | 2.7 billion K | 1 day        |  |



Values for a 25 M<sub>Sun</sub> star

Apr 15, 2005

Astronomy 210 Spring 2005

# Core Collapse



- Completely out of gas!
- Hydrostatic equilibrium is gone.
- The iron core of the star is supported by electron degeneracy pressure
  - Same pressure that supports a white dwarf
- Eventually, gravity will win...
  - This will happen when the core reaches 1.4 solar masses
  - Remember the Chandrasekhar limit
- When it goes over the limit core collapse!
  - From 1,000 km across to 50 km in 1/10th of a second

Evolutionary Path of a High-Mass Star



Mhen Electron Degeneracy Just
Isn't Enough

Matter in the core of a normal star

Electron-degenerate matter 1 ton per cubic cm

Neutron-degenerate matter 100 million tons per cubic cm

#### Supernova!

- Core basically becomes a large atomic nucleus- ultra-high density!
- During collapse, envelope "bounces" of stiff core and produces a shock wave
  - Material is so dense, that it is opaque to the neutrinos produced
  - Neutrinos give the shock a "kick"
  - Rips the outer layers of the star apart
- Star explodes in a supernova
- Releases a tremendous amount of energy
  - 99% of the energy in the form of neutrinos
- >90% of the mass of star is ejected into space!
  - Fast, hot,





Apr 15, 2005

Astronomy 210 Spring 2005

#### AstroBlaster!



Astronomy

Apr 15, 2005

### Supernova!





# Bright as a Galaxy



- Supernovae are bright
  - A star's brightness increases 10,000 times!
  - Rivals an entire galaxy!



Light from a single supernova Astronomy 210 Spring 2005

Apr 15, 2005

#### Making Heavy Elements

Cosmic Abundance

10<sup>0</sup>

10-2



- During the explosion, energy-consuming fusion reactions are possible
- Heavy elements up to plutonium (& beyond?) are produced
- Dominant product: iron
- These by-products are *blasted* into space (>90% of star)
- Ejection is fast, hot, and enriched.
- Supernovae provide much of the building blocks for planets... and us!
- We are recycled supernova debris!
- · Star stuff.

Apr 15, 2005

Astronomy 210 Spring 2005

Delenn, B5

Atomic Number



#### Stellar Evolution Cycle





Apr 15, 2005

Astronomy 210 Spring 2005

### Stellar Evolution Cycle



- · Stars form out of the interstellar medium
- They manufacture helium, carbon, nitrogen and more in their interiors by nuclear fusion
- Heavier elements (iron, lead, uranium, etc..) are made by supernovae
- Stars give these processed materials back to the interstellar medium when they die
- The processed materials are included in the gas and dust out of which the next generation of stars and planets will form

# Another Way to Make a Supernova



- If a white dwarf in a binary system steals enough matter, it can go over the Chandrasekar Limit
- The white dwarf collapses under its own gravity
- Carbon and oxygen fuse into iron and nickel
- Star rips itself apart in a thermonuclear explosion
  - White dwarf is destroyed



Astronomy 210 Spring 2005
Apr 15, 2005
Apr 15, 2005
Apr 15, 2005

### Bright Supernovae

Ì

- Core-collapse supernovae are called Type II
- Type Ia supernovae are brighter than Type II's!



Astronomy 210 Spring 2005

Apr 15, 2005

# Supernova Explosions in Recorded History



• 1054 AD

Apr 15, 2005

- Europe: no record
- China: "guest star"
- Anasazi people
  - Chaco Canyon, NM
  - Rock Paintings
- Modern view of this region of the sky:
  - Crab Nebula a supernova remnant
- Massive star supernova



Astronomy 210 Spring 2005

Supernova Explosions in Recorded History



- November 11, 1572
- Recorded by Tycho Brahe
  - Called it a "nova stella" (new star)
- For about two weeks the supernova could be seen in the daytime!
- Modern view (X-rays):
  - Tycho's Supernova Remnant
- Probably a white dwarf supernova (Ia)





### Supernova 1987A



Before

Astronomy 210 Spring 2005

Feb. 23, 1987





#### Supernova 1987A

- Supernova are rare
- Only about ~3/century in a galaxy.
- Last was 400 yrs ago (Tycho)
- 1987A happened in the satellite galaxy LMC (150,000 lyrs away)
- Star was about 20  $M_{\odot}$
- Detected neutrinos from the core (most of explosion energy) for 10 secs about 20 v.



Apr 15, 2005

Astronomy 210 Spring 2005

#### Supernova 1987A - Today





Apr 15, 2005

#### Game Over!



Apr 15, 2005

# Supernova Leftovers



- What's left of the star's core after a Type II supernova?
- A neutron star
  - About 1.4 2 solar masses
  - Very small diameter around 20 km!
  - Composed of a sea of neutrons
    - Supported by neutron degeneracy pressure!
    - Teaspoon of neutron star material on Earth would weigh almost 1 billion tons!!!!
  - Surface gravity 200 billion times that on Earth
  - Escape velocity of half the speed of light

## Relative Sizes of Stellar Corpses







Neutron star

Apr 15, 2005

Astronomy 210 Spring 2005





• In the late 1960s, Jocelyn Bell discovered

radio pulses from the constellation Vulpecula that repeated regularly

• Perfect timing, but no real encoding of

• Jokingly called LGMs, then Pulsars.

- Every 1.337... seconds

• What could it be?





Jocelyn Bell Burnell



Anthony Hewish

Apr 15, 2005

signal.

Astronomy 210 Spring 2005 http://www.radiosky.com/rspplsr.html

#### **Pulsars**



- What could it be?
  - Pulses were too fast to be a variable star
- What can they be?
- A rotating star?



## Rotating Star?



Max possible rotation rate at equator: when gravity balances centripetal acceleration.

$$v_c = \sqrt{\frac{GM}{R}}$$

But

$$v_c = \frac{2\pi R}{P}$$

SO

#### Rotating Star?



Solve for P

$$= \frac{4 \times 10^5 \text{ s}}{\sqrt{\rho}} \quad \rho \text{ in kg/m}^3$$

Apr 15, 2005

Astronomy 210 Spring 2005

#### **Pulsars**



- What could it be?
  - Pulses were too fast to be a variable star
- Very precise, better than atomic clocks.
- P from 1s to 1ms!
- Could they be something spinning?
  - Would have to be small to be spinning that fast
- They must be spinning neutron stars!



Rotating Star?



For shortest possible pulsar known of P=1 ms

$$P = \frac{4 \times 10^5 \text{ s}}{\sqrt{\rho}} \quad \rho \text{ in kg/m}^3$$

$$\Rightarrow \rho_{\min} \ge 10^{17} \text{ kg/m}^3$$

Must be a neutron star!  $V_{esc} > 1/3$  c!

Apr 15, 2005

Astronomy 210 Spring 2005

#### What are Pulsars?



- When the core collapses, its spin and magnetic field strength increases
- Typically
  - Surface field strength over 1 trillion times that of the Earth
  - Rotation rate up to 1000 times per second
- Magnetic field beams radiation into space
- If the Earth is in the beam's path, we see the pulsar

#### What are Pulsars?

Ì

- When the core collapses, its spin and magnetic field strength increases
- Typically
  - Surface field strength over 1 trillion times that of the Earth
  - Rotation rate up to 1000 times per second
- Magnetic field beams radiation into space
- If the Earth is in the beam's path, we see the pulsar



Apr 15, 2005

Astronomy 210 Spring 2005

# Crab Nebula – Remnant of the Supernova of 1054





Apr 15, 2005

Astronomy 210 Spring 2005

# Crab Nebula – Remnant of the Supernova of 1054





Astronomy 210 Spring 2005

# When Neutron Degeneracy Isn't Enough

- Maximum neutron star mass
  - About 3.0 M<sub>Sun</sub>
- Beyond this mass, neutron degeneracy cannot stop gravity
- Nothing left to stop total collapse

  – gravity rules!
- A black hole...  $v_{esc} > c$



# Stellar Evolution Recap



