Astronomy 210

Outline

This Class (Lecture 31):

Solar Observing & HW9 due April 15th

Stars: Spectra and the H-R Diagram

Stardial 2 is available.

Next Class:

Life and Death of the Sun

Apr 11, 2005

Astronomy 210 Spring 2005

Apr 11, 2005

Astronomy 210 Spring 2005

Stellar Properties

- Apparent brightness Flux or apparent magnitude
- Distance
- Masses of binary systems
- Color
- Stellar spectra

The Mosquito Dilemma

- It's like a mosquito trying to understand humans.
- They don't live long enough to watch humans be born and die, so they have to extrapolate.
- · How do we understand stars that live for 10 billion+ years?

Astronomy 210 Spring 2005

Astronomy 210 Spring 2005 http://news.uns.purdue.edu/html3month/2004/040823.Williams.fallwnv.htm

Spectral Classes

- To understand the physical nature of stars, we need to look at their
- 9 classes based on spectrum lines

Iron, magnesium, calcium absorption lines my 210 Spring 2 Apr 11, 2005

Molecular absorption lines (e.g., TiO)

Apr 11, 2005

What do the spectra tell us?

- The spectra tell us about both the compositions and temperatures of the stellar atmospheres
- Astronomer Cecilia Payne found that most stars' compositions are very similar to the Sun's
- The spectral sequence is due to temperature, not composition

- M & K stars are 92% hydrogen, but their photospheres aren't hot enough to excite it

Astronomy 210 Spring 2005

Properties of Spectral Classes

Spectral class	Color	Temperature (K)	Spectral lines	Examples Naos (ζ Puppis), Mintaka (δ Orionis) Spica (α Virginis), Rigel (β Orionis) Sirius (α Canis Majoris), Vega (α Lyrae)	
0	Blue-violet	30,000-50,000	Ionized atoms, especially helium		
В	Blue-white	11,000-30,000	Neutral helium, some hydrogen		
A	White	7500-11,000	Strong hydrogen, some ionized metals		
F	Yellow-white	5900-7500	Hydrogen and ionized metals such as calcium and iron	Canopus (α Carinae), Procyon (α Canis Minoris)	
G	Yellow	5200-5900	Both neutral and ionized metals, especially ionized calcium	Sun, Capella (α Aurigae)	
K	Orange	3900-5200	Neutral metals	Arcturus (α Boötis), Aldebaran (α Tauri)	
М	Red-orange	2500-3900	Strong titanium oxide and some neutral calcium	Antares (α Scorpii), Betelgeuse (α Orionis)	

Dwarves

Astronomy 210 Spring 2005

700-1000

T Dwarves

2MASSW J1217-03

A methane (T-type) dwarf in the constellation Virgo

The optical view

2MASS Composite JHK, Atlas Image

Palomar Digitized Sky Survey

A.J.Burgasser (Caltech), J.D.Kirkpatrick (IPAC/Caltech), M.E.Brown (Caltech), LN.Reid (U.Penn), J.E.Gizis (U.Mass), C.C.Dahn & D.G.Monet (USNO, Flagstaff), C.A.Beichman (JPL), J.Liebert (Arizona), R.M.Cutri (IPAC/Caltech), M.F.Skrutskie (U.Mass)

vv/ARCHIVE/

Apr 11, 2005

T and L

- We now have luminosity and temperatures of stars.
- How do they correlate?
- Think about it.
- If we can have any L for any T, what do we expect?
- If only one L for one T, then what?

Astronomy 210 Spring 2005

Apr 11, 2005

The H-R Diagram

- In the early 20th century, two astronomers plotted absolute magnitude vs. spectral class and found an interesting correlation in different regimes.
- It is not a random plot of points!
- The resulting plot is now named for them
- The Hertzsprung-Russell Diagram

Hertzsprung-Russell Diagram

Astronomy 210 Spring 2005

Astronomy 210 Spring 2005

The H-R Diagram

 Stars do not have random temperatures and brightness

91% of all stars are on the Main Sequence.

- Why?

But, there are also very bright cool stars and very dim hot stars

Apr 11, 2005

 $A stronomy~210~Spring~2005\\ \underline{\text{http://www.kosmologika.net/Stars/HR-fordelning_av_samplade_stjarnor.gif}}$

The H-R Diagram

How does the size of a star near the top left of the H-R diagram compare with a star of the same brightness near the top right of the H-R diagram?

- They are the same size
- The star near the top left is larger
- The star near the top right is larger

210 Spring 2005

Luminosity

- · Energy radiated per second
- Depends on
 - Temperature luminosity per area proportional to T⁴
 - Radius surface area proportional to R²
- Bright cool stars must be large
 - Giants & Supergiants
- Dim hot stars must be small
 - White dwarfs

Luminosity Classes

- Stars on the H-R diagram are also divided into luminosity classes
- Appended to a star's spectral class
- The Sun is a class "G V" star

Astronomy 210 Spring 2005

Astronomy 210 Spring 2005

Hertzsprung-Russell Diagram

Apr 11, 2005

Astronomy 210 Spring 2005

What do the regions of the H-R Diagram mean?

- One big question What are the differences between stars in the regions of the H-R diagram?
- The regions of the H-R diagram reflect different states of stellar evolution (aging)
 - Main sequence stars are "adult stars"
 - Giants and supergiants are "aged stars" (nearing the end of their lives)
 - White dwarfs are "dead stars"

Apr 11, 2005

Astronomy 210 Spring 2005

The Mass-Luminosity Relationship

where
$$\alpha = 4.0 \ 0.43 \ M < 0.43 M_{\odot}$$
 where $\alpha = 4.0 \ 0.43 < M < 10 M_{\odot}$ and $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of $M > 10 M_{\odot}$ and $M > 10 M_{\odot}$ are specified by the second states of

• Much larger range in luminosity than in mass

• Non-main sequence stars deviate from this relationship

104 • 7.6 • 5.9 10-2 40,000 20,000 10,000 5000 ← Surface temperature (K)

Astronomy 210 Spring 2005

Hydrostatic Equilibrium

Ì

- The battle between Gravity and Pressure is a draw for these stars.
- Pressure pushes out and gravity pulls in – an equilibrium
- This is why a main sequence star isn't shrinking even though it's a big ball of gas
- A star's life is all about this battle!

Apr 11, 2005

Astronomy 210 Spring 2005

Pressure

Important Questions

- A star remains stable and on the main sequence as long as it has hydrogen to fuse in the core...
- How long will the fuel last?
- What happens when the fuel runs out?

More than one way to fuse

- High-mass stars do fusion by a second process
- Called the *CNO cycle*
 - Still converts 4 hydrogens into 1 helium
 - Uses a carbon nucleus as a catalyst
- Requires very high temperatures in the core
 - More than low-mass stars (like the Sun) can produce

The CNO Cycle

Astronomy 210 Spring 2005

Apr 11, 2005

Main Sequence Lifetimes

- For main sequence stars, we have an M and L.
- We know $E = L\tau$
 - energy supply (fuel) = energy lost (burn rate x age)
- So, $\tau = E/L$ and $E \propto M$ and $L \propto M^4$
- $\tau = 1/M^3$
- Using solar values, we get
- $\tau = 10^{10} \, (M_{\odot}/M)^3$
- High-mass stars have dramatically shorter lifespans!

Astronomy 210 Spring 2005

Astronomy 210 Spring 2005

Main Sequence Lifetimes

Apr 11, 2005

Astronomy 210 Spring 2005

Stellar Lifestyles

Low-mass stars

Massive stars

Apr 11, 2005

Astronomy 210 Spring 2005

Life Fast, Die Young

- High-mass stars: "gas guzzlers"
 - Very bright
 - Live short lives, millions of years
- Low-mass stars: "fuel efficient"
 - Dim
 - Long-lived, tens to hundreds of billions of years

TABLE 11-1	Main-Sequence Lifetimes					
Mass (M _⊙)	Surface temperature (K)	Luminosity (L_{\odot})	Time on main sequence (106 years)	Spectral class		
25	35,000	80,000	3	0		
15	30,000	10,000	15	В		
3	11,000	60	500	A		
1.5	7,000	5	3,000	F		
1.0 (Sun)	6,000	1	10,000	G		
0.75	5,000	0.5	15,000	K		
0.50	4,000	0.03	200,000	M		

Apr 11, 2005

Guess The Cluster's Age!

- We can estimate the age of a cluster from its main sequence stars
 - Massive stars age faster than low mass stars
 - The cluster can't be any older than its most massive stars' main sequence lifetimes
 - We call the point where a cluster's main sequence ends the main sequence turnoff

Astronomy 210 Spring 2005

The Evolution of Stars

- A star's evolution depends on its mass
- We will look at the evolution of three general types of stars
 - Red dwarf stars (less than 0.4 M_{Sun})
 - Low mass stars (0.4-8 M_{Sun})
 - High mass stars (more than 8 M_{Sun})
- We can track the evolution of a star on the H-R diagram
 - From main sequence to giant/supergiant and to its final demise

Apr 11, 2005

Astronomy 210 Spring 2005

Red Dwarf Stars

- $0.08 M_{Sun} < Mass < 0.4 M_{sun}$
- Fully convective interior
- The star turns all of its hydrogen to helium, then all fusion will stop
- Live hundreds of billions to trillions of years
- The Universe is only about 14 billion years old, so none of these stars have yet made it to the end of their life

Life of a Low Mass Star

- Most of its life is spent in the happy pursuit of burning H ⇒ He
- With time L and T evolve gradually in response
- The Sun is now 30% brighter than zero age MS
- At 10 Byr will be 2x as bright as now
- This alone will cause a Greenhouse effect on earth!
- But in fact, oceans boil⇒ runaway greenhouse when L = 1.1L_⊙, which happens in about 1 Byr. So this is when things may hit the fan, not in 5 Byr.
- Model dependent, but still....

Astronomy 210 Spring 2005

Astronomy 210 Spring 2005

http://wings.avkids.com/Book/Myth/Images/ocean_sun.gif

Evolutionary Path of a Solar-Mass Star

The Red Giant Phase

H Burning

Shell

Cool, Extended

Envelope

- When the hydrogen is gone in the core, fusion stops
- Core starts to contract under its own gravity
- This contracting heats the core, and hydrogen fusion starts in the shell around the core
- Energy is released, expands envelope ⇒ Lum increases!
- As the envelope expands, it cools so it becomes a red giant

Contraction Junction

- In core, contraction increases ρ
- Contraction slowed by Pauli exclusion principle: can't put 2e's in same state
- Quantum "degeneracy" pressure (same as in solid bodies!)
- $P = K\rho^{5/3}$ K const: depends only on ρ , not T (\neq ideal gas!)

Contraction Junction

- Degenerate core and H burning shell
- Core heats ⇒ He fusion ignites
- In a normal gas: T↑, P↑ so it expands & cools
- In a degen. gas: T↑, P const so no expansion & no cooling
- So the reaction speeds up ⇒ explosion!
- Helium Flash (few min)
- Note: explosion energy trapped in outer layers so don't see anything special from the outside

Astronomy 210 Spring 2005

Apr 11, 2005

Helium Burning

- When the core of the star reaches 100 million degrees, it can start to fuse helium into carbon
- Called the Triple-Alpha Process
 - Converts 3 heliums into one carbon + energy

Astronomy 210 Spring 2005