Astronomy 150: Killer Skies Ì

Night Obs

Dates:

- Monday, Oct. 4th 🖌
- Tuesday, Oct. 5th 🗸
- Wednesday, Oct. 6th 🖌
- Thursday, Oct. 7th ✓
- Monday, Oct. 11th X
- Tuesday, Oct. 12th ✗
- Wednesday, Oct. 13th
- Thursday, Oct. 14th
- Monday, Oct. 18th
- Tuesday, Oct. 19th

Starts at 8pm until 10pm (expect to spend ~40 mins)

Go to assignment page on class website for more info.

You **MUST** download worksheet <u>before</u> you go.

Can be cloudy, so check webpage before you go.

Outline

- Massive stars do not live very long.
- Massive stars- making heavy elements.
- Supernova

This Class (Lecture 19): Death of Massive Stars

<u>Next Class:</u> Killer Supernova

Music: We Are All Made of Stars- Moby

HW7 due Monday!

No lecture on Monday-

Computer lab opportunity

Question

Did you go to the Observatory yet?

- a) Yes, it was okay.
- b) Yes, it was cool!
- c) Yes, it was the highlight of my life so far!
- d) Yes, but it was boring.
- e) No, but I will do so as soon as I can, I promise. I had other things I had to do, but I really, really want to go and I will make it a **top** priority in my life!

The Mass-Luminosity **Relationship**

ity

- Luminosity is proportional to Mass
- Larger range in luminosity than mass (10⁶ vs. 100)
- Higher mass = higher luminosity, higher temp, and large radius
- Lower mass = lower luminosity, lower temp, and smaller radius
- Only on Main Sequence!

HR Diagram

Sun is converting 700 million tons of H into 695 million tons of He every second!

BUT, a 20 solar mass star is using it's fuel 36,000 times faster!

Question

A massive star on the main sequence is where on the HR diagram?

- a) Upper right.
- b) Upper left.
- c) Bottom right.
- d) Bottom left.
- e) Middle.

Lifecycle of a Star

• Star formation

- Take a giant molecular cloud core with its associated gravity and wait for 10⁴ to 10⁷ years.

- <u>Main sequence life (depends on mass!)</u>
 - Few x 10^6 years to more than age of Universe
 - Thermonuclear burning of H to He
- Death
- Exhaust hydrogen
- Red giant / supergiant
- White dwarfs, supernova neutron stars, black holes

Life of a Low Mass Star **Red giant** Shell hydrogen Main sequence burning Core hydrogen burning $T_{\rm core} \sim 16$ million K I Burning Asymptotic branch giant Shel Cool, Extended Shell helium burning Envelope lelium flas Burning Shell **Horizontal branch** le Burning Shell Core helium burning Envelope Cool. Extended $T_{\rm core} \sim 100$ million K Envelope

Stellar Lifestyles

Low-mass stars

Massive stars

Life Fast, Die Young

- High-mass stars: "gas guzzlers"
 - Very bright
 - Consume hydrogen fuel supply very quickly
 - Only live for millions of years on the main sequence

table 21-1	Approximate Main-Sequence Lifetimes			
Mass (M _☉)	Surface temperature (K)	Spectral class	Luminosity (L_{\odot})	Main-sequence lifetime (10 ⁶ years)
25	35,000	0	80,000	4
15	30,000	В	10,000	15
3	11,000	А	60	800
1.5	7000	F	5	4500
1.0	6000	G	1	12,000
0.75	5000	K	0.5	25,000
0.50	4000	М	0.03	700,000
The main-se	eauence lifetimes were estimated u	sing the relationship $t \propto 1$	/M ^{2.5} (see Box 21-2).	

Evolution of an Intermediate-Mass (~4 M_{Sun}) Star

More than one way to fuse

- High-mass stars do fusion by a different process
- Called the CNO cycle
 - Still converts 4 hydrogens into 1 helium
 - Uses a carbon nucleus as a catalyst
- Quicker reaction
- Requires very high temperatures in the core
 - More than low-mass stars (like the Sun) can produce

The CNO Cycle

For High Mass Stars

- For stars with an <u>initial</u> <u>mass</u> of more than 10 solar masses
- The final state will no longer be a white dwarf.
- Let's follow more carefully the life path of a high mass star- it's short sweet and ends with a bang!

A1: A 150 solar mass star!

When the Hydrogen Runs out?

- Similar to lower-mass stars in the first few stages, just quicker.
- When the hydrogen supply runs out the core starts to contract
- Hydrogen shell burning (around the helium core) starts
- The outer envelope expands quickly becoming a red <u>supergiant</u>

The Supergiant Phase

- Outer envelope of the star grows larger and cooler
 - Up to 5 AU in size!
 - Unlike a low mass star, brightness does not increase dramatically
- Eventually, core is hot enough that it can fuse helium atoms together (non-degen gas, so no flash)
 - Star contracts and heats up
 - Now a blue supergiant

Question

What causes a high-mass star to leave the main sequence?

- a) Just gets tired of the main-stream media and lifestyle.
- b) Runs out of hydrogen in the core.
- c) Runs out of helium in the core.
- d) A shell around the core begins to burn helium.
- e) A shell around the core begins to burn hydrogen.

Massive Stars: Cycles of Fusion

- Helium fusion is not the end for massive stars
- Cycles of core contraction, heating, ignition
- Ash of one cycle becomes fuel for the next
 - hydrogen ⇒ helium
 - − helium \Rightarrow carbon & oxygen
 - carbon ⇒ neon, sodium, & magnesium
 - neon ⇒
 oxygen & magnesium
 - oxygen ⇒
 - silicon & sulfur
 - $\hspace{0.2cm} silicon \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} iron$

Ì

Iron – The End of the Road

- Supergiants "burn" heavier and heavier atoms in the fusion process
- Each stage faster than the last
- After iron no fuel left!
 - It requires energy to produce heavier atoms

Stage	Temperature	Duration
H fusion	40 million K	7 million yr
He fusion	200 million K	500,000 yr
C fusion	600 million K	600 yr
Ne fusion	1.2 billion K	1 yr
O fusion	1.5 billion K	6 mo
Si fusion	2.7 billion K	1 day

Ì

- Onion-skin like structure develops in the core
- Has layers.... like an Ogre..

High Mass Stars (15 M_{sun})

http://rainman.astro.uiuc.edu/ddr/stellar/index.html

Values for a $25M_{Sun}$ star

Core Collapse

- Completely out of gas!
- Hydrostatic equilibrium is gone.
- The iron core of the star is supported by electron degeneracy pressure

- Same pressure that supports a white dwarf
- Eventually, gravity wins...
 - This happens when the core is > 1.4 solar masses and no more outward pressure.
 - Remember the Chandrasekhar limit

Question

What is the force that supports a white dwarf but can not support a massive stellar core.

- a) Pressure from fusion
- b) Pressure from CNO fusion
- c) Electron degeneracy pressure
- d) Gravity pressure
- e) Neutron degeneracy pressure

Core Collapse

- When core is greater than 1.4 M_{sun} core collapse!
 - From 1,000 km across to 50 km in 1/10th of a second
 - Nearly 10% speed of light!
- The core is transformed into a sea of neutrons
 - Electrons are squeezed into protons, neutrinos released
 - High energy gamma rays produced
 - The core has nuclear density!
 - It Earth has same density, it would be 1000 feet in diameter

Core Collapse

- Core suddenly collapsed
- Envelope has nothing left to stand on
- Envelope falls at significant fraction of the speed of light, slamming into compressed core

Supernova!

- Hitting the compressed core is like hitting a brick wall and the envelope gas reverses direction– blow-back.
 - But, by itself not enough to destroy star.
 - Material is so dense, that it is slightly opaque to the neutrinos produced
 - And 1058 neutrinos!
 - Neutrinos give the shock a "kick"
 - Rips the outer layers of the star apart
- Star explodes in a <u>supernova</u>

10 milliseconds

20 milliseconds

Supernova!

http://www.spacetelescope.org/images/screen/heic0609c.jpg

- The lifetime battle against gravity is lost.
- The core collapses under its own weight.
- Much of the mass of the outer region of the star, bounces back into space.

Supernova!

- The energy is enormous! The visible light is around only 1% of the energy output!
 - 99% of the energy in the form of neutrinos
- > 90% of the mass of star is ejected into space!
 - Fast, hot,

10 milliseconds

20 milliseconds

AstroBlaster!

Question

In the astroblaster demo, what did the little red ball represent?

- The inner core of the massive star a)
- The envelope of the massive star b)
- A low-mass stellar companion to the high mass c) star.
- d) Iron.

Game Over!

Making Heavy Elements

- The star goes <u>supernova</u> and explodes. Some of C, O, P, S, Si, and Fe get carried away. At this point, even heavier elements 10^{10} \mathbb{H} can be made during energy 10 consuming fusion reactions 10
- consuming fusion reactions
 These by-products are *blasted* into space (>90% of star)
 Supernovae provide much of the building blocks for
- Supernovae provide much of the building blocks for planets... and us!

- We are recycled supernova debris!
- We are Star stuff.

http://www.youtube.com/watch?v=ptwEV0xhTzI&feature=related Delenn, B5 2:00 - 3:06

