Astronomy 150: Killer Skies

<u>This Class (Lecture 16):</u> Killer Sun

Next Class:

The Sun is dangerous today

HW6 due on Monday!

Music: It Overtakes Me- The Flaming Lips

Night Obs

Dates:

- Monday, Oct. 4th ✓
- Tuesday, Oct. 5th ✓
- Wednesday, Oct. 6th
- Thursday, Oct. 7th
- Monday, Oct. 11th
- Tuesday, Oct. 12th
- Wednesday, Oct. 13th
- Thursday, Oct. 14th

Go to assignment page on class website for more info.

You **MUST** download worksheet before you go.

Can be cloudy, so check webpage before you go.

Why aren't there any green stars?

- 1) There are.
- 2) We just can't see them, so they don't fit into our scheme of objects.
- 3) http://www.youtube.com/watch?v=BvjeP3SfD1g

Question

Did you go to the Observatory yet?

- a) Yes, it was okay.
- b) Yes, it was cool!
- c) Yes, it was the highlight of my life so far!
- d) Yes, but it was boring.
- e) No, but I will do so as soon as I can, I promise. I had other things I had to do, but I really, really want to go and I will make it a **top** priority in my life!

Outline

Ì

- The Sun runs out of fuel
 - Red Giant!
 - Horizontal Branch Star
 - Asymptotic Giant Branch
- The dead Sun— White Dwarf

Question

As the Sun moves off the main sequence what happens in the core?

- a) Hydrogen burning stops
- b) Helium burning stops
- c) TNT burning stops
- d) We don't know, but it makes the Sun red.

In 6-7 Billion years

In 6-7 Billion years

- The Sun will expand to 100-250 times bigger than it is now!
- The same mass but now it's bigger.

http://www.youtube.com/watch?v=3rH4bMylBKg

The Sun today and as a red giant

- The surface gravity decreases and the Sun has more luminosity.
- The solar wind turns into a stellar wind, and it looses material as it expands, about 10⁷ times more than now.
- It's blowing it all away!

http://www.astropix.com/wp/wp-content/uploads/2006/12/2006_02.JPG

In 6-7 Billion years

- During the time it expands it loses a significant fraction of mass.
- So, the planets move outward.
- Planets race away as the Sun expands.
- Who wins?
- We aren't yet sure.

In 6-7 Billion years

- We use to think that the Sun would gobble the Earth.
 - Mercury gone
 - Venus probably gone
 - Earth?
- •BUT even if not, with the Earth's oceans and atmosphere gone, crust still melts.
- Not good...

In 6-7 Billion years

- Mars?
 - -For sure too hot.
- Jupiter's Moons?
 - Still too hot
 - Europa's water vaporizes
- Even the moons of Uranus and Neptune may be too hot.

Mitigation

- We would have to move the Earth out to Pluto or further!
- Probably not possible.
 - Interactions with Jupiter may eject us from Solar System
- Even then, Sun no longer in equilibrium, may oscillate in size or brightness.
- BUT, we got billions of years to figure it out!

The Sun today and as a red giant

Evolutionary Path of a Solar-Mass Star

Evolutionary Path of the Sun

Question

As the Sun evolves into a red giant, its position on the H-R diagram will move...

- a) Up and to the left
- b) Down and to the right
- c) Down and to the left
- d) Up and to the right

Contraction Junction

- In core, contraction increases density
- Hotter, and hotter, and hotter until...

Contraction Junction

- 100 million degrees F
- Core heats ⇒ He fusion ignites
- He \Rightarrow C & O

Helium Burning

- When the core of the star reaches 100 million degrees, it can start to fuse helium (the ash of hydrogen burning) into carbon
- Called the Triple-Alpha Process
 - Converts 3 heliums into one carbon + energy

Helium Burning

- As helium fuses into carbon, carbon slowly accumulates in the core.
- Collisions between carbon-12 and a helium nucleus can create the stable nucleus of oxygen-16, which increases with the carbon concentration.
- So process of burning helium creates C and O "ash".

The Horizontal Branch

H-Burning Shell

Envelope

- Helium burning stabilizes the core
- The outer envelope shrinks, heats up, and dims slightly
- But helium doesn't last very long as a fuel
 - Horizontal branch lifetime is only about 10% that of a star's main sequence lifetime
 - Our Sun will burn helium for about a billion years
 - Also He burning is unstable

Helium Flash: 7.7 Billion Years

- Helium Flash (~few min)
- Note: explosion energy trapped in outer layers so don't see anything special from the outside
- As much energy released as all of the rest of the stars in the Galaxy.
- Core turns normal and it calms down.

Evolutionary Path of a Solar-Mass Star

Mitigation

- If we moved the Earth, we have to move it back.
- Temperatures will drop out by Pluto.
- But our descendents have less time to figure this out, as the change is faster.
- Need to move back in a few million years.

Evolutionary Path of a Solar-Mass Star Schematic Hertzsprung-Russell Diagram 10640,000 20,000 10,000 3000 ^(K) 4500 -10 ن ص ن Absolute Magnitude 😱 Planetary nebula 📍 104 Asymptotic giant bran Luminosity (L_{sun}) Horizontal branch Main sequence 0 10-4 F G K В М Spectral Class

Aging Stars

When Helium Runs Out... 7.8 Billion Years

- Fusion in the core stops the helium has been converted to carbon and oxygen
- Stellar core collapses under its own gravity again
- Shell starts fusing helium
- Star starts to grow and cool again

- Gets hotter again, have to move Earth back out
- But, expansion is quicker than before, 20 million years.
- Will get more luminous than last time!
- · Considering what is about to happen, perhaps best to leave Solar System.

Life of a Low Mass Star Red giant Shell hydrogen Main sequence burning Core hydrogen burning $T_{\rm core} \sim 16$ million K H Burning Asymptotic branch giant Cool, Extended Shell helium burning Envelope Burning Shell **Horizontal branch** le Burning Shell Core helium burning Cool. Extended $T_{\rm core} \sim 100 \text{ million K}$ Envelope

Evolutionary Path of a Solar-Mass Star

Question

As the Sun becomes an asymptotic giant branch star, what is happening in the central core of the Sun?

- a) Hydrogen burning.
- b) Helium burning.
- c) TNT burning.
- d) Nothing is burning, fusion has stopped.
- e) We don't know, but it makes the Sun red.

End Game

- At these last stages, the Sun will likely oscillate in size and temperature.
- This is messed up and creates a "Superwind"
- Outer layers of the red giant star are cast off
 - Up to 80% (at least 50%) of the star's original mass

End Game

- "The core remains, made of carbon/oxygen "ash" from helium fusion
 - The core is very hot, above 200,000 K
- Ultraviolet radiation from the core ionizes the cast off outer layers
 - Becomes a *planetary nebula*
 - Unfortunate name, but some of the most beautiful objects in the sky.

What About the Core?

Evolutionary Path of the Sun

- Final fate White dwarf
 - Slowly cools off over billions of years
 - Just a hot body
 - No fusion
 - Not really a star in some ways

Sirius B

10^{4} □ Temperature (K)

http://rainman.astro.uiuc.edu/ddr/stellar/index.html

What About the Sun's Core?

- Nuclear fusion has **stopped**, and gravity begins to win the battle
- Core contracts to the size of the Earth
 - But its about 60% the Sun's mass!
 - Material in the core is compressed to a density of $1,000 \text{ kg/cm}^3$!
 - Very hot, surface temperature >100,000 K

but will usually weigh about 0.6 Solar masses

What Happens to Earth?

- We have detected planets around white dwarfs, but they have presumable had a hard time.
- If you were to visit the wasteland of Earth, the Sun would only be a very bright point of light.
- Not sufficient for life.

Electron Degeneracy

- The electrons get so squashed together that they get pushed into *degenerate states*
 - This creates pressure to counteract gravity (Pauli exclusion)
 - Stops contraction

