#### Astronomy 150: Killer Skies

Ì

This Class (Lecture 11): Mitigating Asteroids

<u>Next Class:</u> Why does the Sun Shine?

HW5 due on Monday EC due now!

Exam 1 on the 1st!

Music: Sonne- Rammstein

## Night Obs

#### • Dates:

- Monday, Oct. 4th
- Tuesday, Oct. 5th
- Wednesday, Oct. 6th
- Thursday, Oct. 7th
- Monday, Oct. 11th
- Tuesday, Oct. 12th
- Wednesday, Oct. 13th
- Thursday, Oct. 14th

Go to assignment page on class website for more info.

You **MUST** download worksheet <u>before</u> you go.

Can be cloudy, so check webpage before you go.

### Exam 1



- Exam 1 in this classroom on Oct 1<sup>st</sup>
- 40 Multiple choice questions
- Will cover material up to and including Friday.
- May bring 1 sheet of paper with notes
  - Both sides
  - Printed/handwritten/whatever.. I don't really care
- Major resources are lecture notes and homeworks
- Try to understand major points more than anything.
- Have created and posted a study guide

#### Outline

- Mitigations for asteroid threats
- The Sun is aging...
- It will run out of fuel...
- Even still it will get hot on Earth before that...



## Early Detection is Key

- The earlier we can detect a threat, the easier it is to mitigate the danger.
  <u>http://www.youtube.com/watch?</u>
  <u>v=XPS-m\_sl7\_k</u>
- A very small change in velocity (speed or direction) can make a huge difference in months.
- Remember inertia (the resistance of mass to change motion), and these things are massive.
- And new comets would only have warnings of a few months!
   http://sol.sci.uop.edu/~ifalward/bhysics17/chapter2/chapter2.htm





## So How to Mitigate?

Two main options:

- Destroy
  - Can be problematic
  - Fragment into many pieces (all in the same orbit).. Have to track hundreds or thousands of objects now!
- Delay
  - Earth is moving 30 km/s, or 1 Earth diameter every 7 minutes.

## **Blow the Mother Up!**

- Typical option discussed is nuclear missiles.
- Might work, vaporizes or at least reduce mass.
- But, need to make sure not to fragment into many still dangerous pieces.
- Imagine twenty-five 50m pieces in the same orbit, would be hard to stop!



## **Blow-Up Job**

- Other option is to blow up a nuclear weapon near the asteroid.
- But not too near to fragment it.
- Imparted energy could be enough to change orbit.
- Neutron bomb (nuclear blast where large fraction of energy is in neutrons) is thought to be most efficient, biggest transfer of energy maybe only chance for last minute threats.



http://www.projectrho.com/rocket/rocket3x.html

## Ì

## Kinetic Energy Deflection

- Impact the asteroid or attach rockets.
- May still fragment, but most have impacts, so less likely
- Actually an ESA mission to test this is occurring in 2013 or 2015!
- The aptly-named Don Quijote mission



http://www.esa.int/SPECIALS/NEO/SEMZRZNVGJE\_1.html

## Don Quijote



Two components:

- Sancho: orbits and accurately measures position
  - Plus the Autonomous
    Surface Package
    Deployment Engineering
    eXperiment, which checks
    out the impact site
- Hidalgo: impactor (10km/s)



http://www.esa.int/SPECIALS/NEO/SEMZRZNVGJE\_1.html

## The Ole' Space Tug

- Put a rocket on the asteroid!
- This can eventually move the rock, but
  - Rockets don't provide too much thrust
  - Will likely need many steerable rockets.
  - Remember that asteroids are rotating!
  - How to attach to a tumbling, rotating asteroid that may only be a big pile of rubble?





## **Gravity Tractor**

- Put an object near the asteroid!
- Using gravity, the asteroid is attracted to spacecraft.
- Spacecraft uses rockets to keep away, so slow pull.
- Would take ~10 years for moderate mass asteroid
- Works no matter the composition-rubble piles not fragmented.



## Focus the Sun on it!

- Use the Sun to melt the asteroid surface.
- This removes material and creates a jet.
- <u>http://www.youtube.com/</u> watch?v=dcqFy1zjdys



http://www.lpl.arizona.edu/~jmelosh/HazardsDeflect.pdf

#### We do know of an asteroid that has a 1 in 300 chance of hitting us in 2880. What should we do?

- A. Blow it up into smaller pieces that will dissipate and disintegrate over the next 800 years.
- B. Coat it in white paint as soon as possible.
- C. Nothing; by the 29th Century, technology will have advanced so much that it will probably be easy to mitigate the hazard.

## Other Propulsion: Light Sails

- Imagine a space sailboat but with photons of light hitting the sails and pushing it forward.
- Photons have energy but no rest mass.
- But, they do carry momentum!
  It is related to the energy such that p=E/c
- So, such a craft is not propelled by solar winds!
- But by light bouncing off, like a mirror.







 $Tcos[sin^{-1}(r/d) + \phi] = GMm/d^2$ Velocity change/second m = 2 x 10<sup>4</sup> Kg d = 1.5 r = 240 meters Ø = 20 degrees T = 2.265 Newtons △V = 7.3 x 10<sup>4</sup> m/sec/ye 2004 KE1

## **Common Misperceptions**



- Lo
- Long waiting time until next impact
  - Instead, we should think of *chances* of disaster and our responsibilities "on our watch"
  - Judging consequences quantitatively
    - Civilization-ending impact vs. K/T mass-extinction
    - "one death" vs. 100 deaths/yr vs. 3000 9/11 dead vs. we will <u>all</u> die in next 100 years (what are our values?)
    - Shoemaker-Levy 9 Jupiter impacts overshadowed the Rwanda genocide in the news (July 1994)
  - "Blow it up" on the way in
    - Movies misrepresent reality of decades lead-time
  - NEA is "on an impact course with Earth"
    - NEA discovery process, error ellipses, NEA orbits the Sun many times before impact: <u>not intuitive</u>!

## Asteroids are Not Likely to Destroy our World...



- ...but we can contemplate the NEO hazard as the most extreme environmental disaster, and put the lesser, more likely ones into context...
  and distinguish between societal issues like global
  - ...and distinguish between societal issues like global warming and true, sudden catastrophes.
  - Many threats to society and our lives (flu, war, famine... global warming) are here today.
  - Asteroids <u>are</u> in our future...as places to travel to, as fuel stations for a spacefaring civilization ...let's hope they don't come to us first!





## Imagine

- Walking to class next week, you notice that you suddenly have two shadows.
- You turn quickly, and it looks like there are two Suns, but one of them is moving toward the horizon!
- Very Fast!
- As it meets the horizon, there is a incredible bright flash, and you can feel the heat!

## Imagine

- An earthquake throws you to the ground, and you get a little worried as you notice that the trees in the distance have burst into flames.
- A sound wave bears down on you at 700 mph!
- Like a mighty thunderclap, it sweeps over you, pulverizing all the nearby buildings...
- As your body disintegrates, you wonder what Leslie was going to lecture on today.

Asteroids are the number one astronomical threat, but not the only one!

#### Imagine

- After being dropped into suspended animation in a Pizza accident a billion years ago, you awake to a crazy new world.
- Disregarding the signs warning people to stay underground, you wander outside and see that the Sun is only about 10% more luminous, but it is crazy hot and the oceans are nearly gone.
- As you quickly succumb to heat stroke, you wonder what Leslie said about Solar Evolution so many years ago.



# Top 10 Ways Astronomy CanKill you or your Descendents

2. Solar Evolution!

The Sun seems eternal, but it is changing. It has already changed quite a bit, and it will end!

I mean rock impact may never happen, but this is going to happen.

The Sun will become a Red Giant, then a White Dwarf, and the party stops!

#### Earth-Sun Comparison In general, a very typical star. Keep in mind that it is really a ball of gas/ plasma.

Visual radius Mass Luminosity Surface temperature Central temperature Rotation period

109 Earth 3.3 x 10<sup>5</sup> Earth 3.9 x 10<sup>26</sup> W 5800 K 1.5 x 10<sup>7</sup> K 25 days

## **Question of Stability**

- The Sun's size is constant.
- No weatherman says it will be especially hot tomorrow as the Sun's size will be increasing.
- Not expanding or collapsing.
- The Sun is stable! Why? 2010



http://sohowww.nascom.nasa.gov/data/realtime/eit\_304/512/ http://www.londonstimes.us/toons/index\_medical.html

## LIVE from the Sun



http://sohowww.nascom.nasa.gov/data/realtime/mpeg/



## **Question of Stability**

- Not trivial, could have gone the other way
- Think: Sun is made of gas, yet not like a cloud, for example, which is made of gas but size, shape changes all of the time
- Not a coincidence: really good reason



"I just don't feel stable."

## Why is the Sun Stable?



- What keeps gravity from collapsing the Sun?
- What keeps the Sun from exploding?