Astronomy 150: Killer Skies Ì

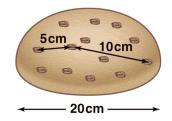
Outline

- The Universe is expanding!
 - Expansion of space-time
- Play the movie backwards. How did the universe begin?

<u>This Class (Lecture 31):</u> The Origin of the Universe <u>Next Class:</u> This is the Way the Universe Ends

HW 11 due on Dec 10th

Music: A Glorious Dawn – http://www.youtube.com/watch?v=zSgiXGELjbc


Expanding

- Hubble showed us that galaxies are moving away from us.
 - The farther, the faster
- This can imply an expanding Universe
- But, we aren't expanding, local forces hold us together

The raisins are like galaxies.

Raisins stay the same size, like Brooklyn.

Question

The Universe is expanding, but we are not. Why?

- a) We are special.
- b) We are grounded by our understanding of the Universe.
- c) We are held together by stronger local forces.
- d) What are you talking about, we are expanding.
- e) The Universe is just no longer expanding.

Common Misconception

- Ì
- Its common to think of the expansion of the Universe like an explosion
 - Galaxies hurled away from each other through space
- This is incorrect!
- Einstein's Theory of Relativity tells us that spacetime itself is expanding!
 - Like an inflating balloon

Analogy - Rubber Band

- Spacetime expands, like stretching a rubber band
- Not only do distances grow...
- Even the photons' wavelengths get stretched!

- Increasing wavelength = redshift!
- Cosmological redshift

Reality

- The analogies are just to help us visualize, don't get stuck in the specifics.
- The Universe has no center.
- The Universe has no edge.
- Concept of time and space began with the Universe, can not apply the concepts so easily.

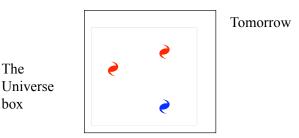
http://universe.gsfc.nasa.gov/images/reach-for-the-

0

universe.jpg

9

The


box

Universe

Living in an Expanding Universe

Consider a large "box" containing many galaxies

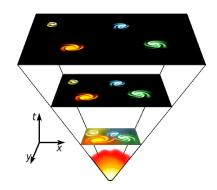
- Total mass in box today: M_{today}
- Total volume in box today: V_{today}
- **Density today** = $M_{\text{today}} / V_{today}$

How does the density of the Universe change with time?

Living in an Expanding Universe

How does the density of the Universe change with time? As the Universe expands:

- *M_{tomorrow}* stays the same
- V_{tomorrow} becomes larger
- Density $M_{tomorrow}/V_{tomorrow} \Rightarrow smaller$


 $M_{tomorrow}/V_{tomorrow} \leq M_{today}/V_{today}$

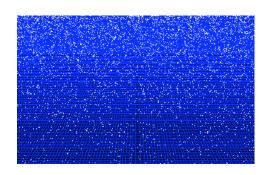
Density changes with time!

- Universe was denser in the past
- Universe will be less dense in the future

Putting it all together:

- 1. The Universe is expanding
- 2. Earlier Universe was more dense
- 3. Earlier Universe was hotter.

The origin of the Universe can be described by the idea of the Big Bang. Where did the Big Bang happen? The Universe is homogenous & isotropic.


The Biggest Bang since the Big One

- Occurred everywhere at once
- <u>Not</u> an explosion into empty space.
- The Universe was suddenly filled with energy hot and dense
- The **beginning** of spacetime, matter, and energy

The Big Bang

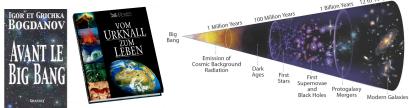
- No special points or locales
- Expansion of all space
- As spacetime expanded, the Universe became less dense and cooler
- Eventually forming the stars and galaxies we see today

http://www.atlasoftheuniverse.com/bigbang.html

The Big Bang

- Big Bang has no center
- Happened everywhere
- Wherever you go, there was the big bang
- So as we talk about the very dense early universe, remember that we are talking about what happened not just far away at the edge of the Universe, but <u>right here!</u> ...smooshed up small, but still <u>right here</u>!

The 3rd Revolution

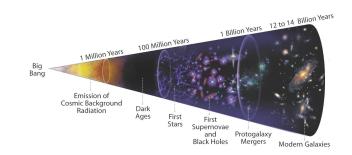

Ì

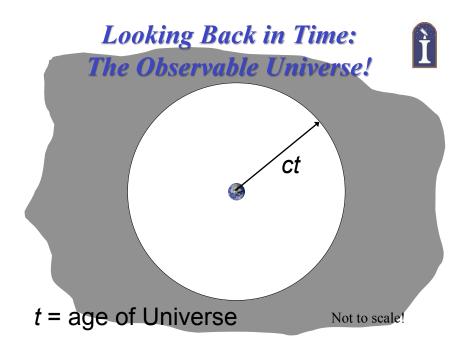
- 1. Copernicus and others: We are not the center of the solar system. The Earth is a typical planet.
- 2. Shapley and others: We are not the center of the Galaxy. The Sun is a typical star.
- 3. Hubble and others: We are not in the center of the Universe. The Milky Way is a typical galaxy.

Naming the Big Bang

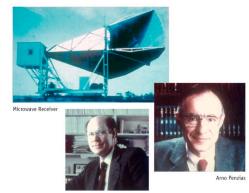
- In the 1940s, extrapolating on Hubble's Law, George Gamow proposed the the universe began in a colossal "explosion" of <u>expansion</u>.
- In the 1950s, the term BIG BANG was coined by an unconvinced Sir Fred Hoyle who tried to ridicule it.
- In the 1990s, there was an international competition to rename the BIG BANG with a more appropriate name, but no new name was selected.

Question

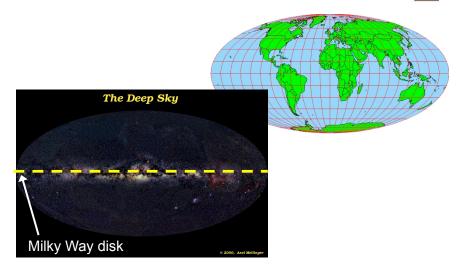

Where did the Big Bang occur?


- a) Everywhere.
- b) At the edge of the Universe.
- c) Just a little past the edge of the observable Universe.
- d) Somewhere in the outer region of the Milky Way.
- e) Snyder Hall, last Saturday night, 11:33 pm.

The Big Bang

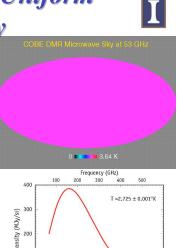

- Scientists do not have a definitive explanation for the Big Bang
- But, a growing body of observations supports the theory that the event did occur.

The Early Universe was HOT!


- If the early Universe was so hot, we should be able to see it glowing. Right?
- <u>Yep, we do!</u> But, as the Universe expanded, it redshifted down to the microwave.
- Now, it is called the Cosmic Microwave Background (CMB).
- First detected by Robert Wilson and Arno Penzias.

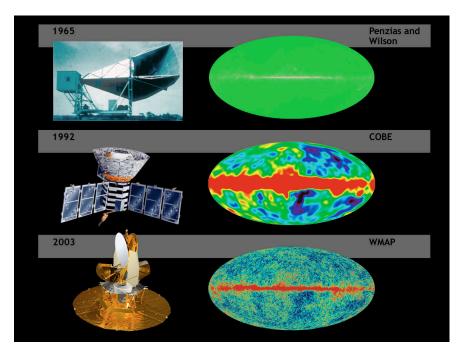
Ì

How to Understand Sky Maps

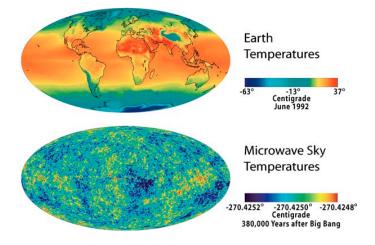


In Fact, a Rather Uniform Blackbody

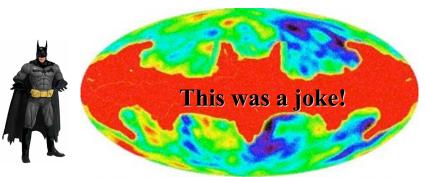
- All over the sky, we see blackbody radiation
 - Temperature = 2.73 K
- Provides compelling evidence for the Big Bang Theory
- Almost perfectly *isotropic* - Nearly the same in every direction
- Indicates that, over large scales, the Universe is uniformly spread out



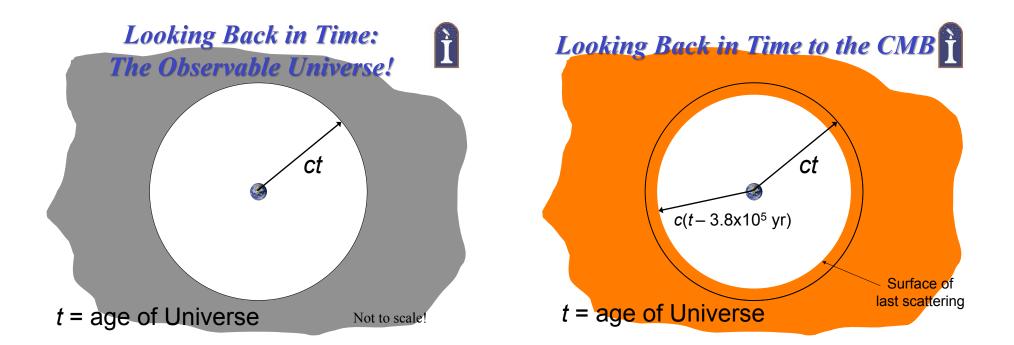
Cosmic Background Explorer (COBE) satellite (launched 1989)



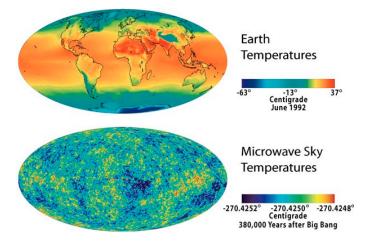
100



WMAP took a "baby picture" of the Universe- only 400000 yrs old.

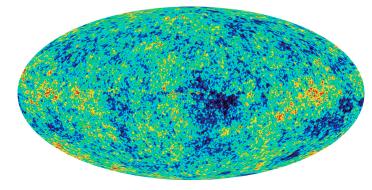


Unknown Fluctuations...

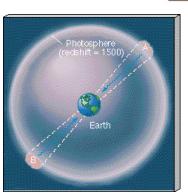


Further refinements of the cosmic microwave background reveal a deeper meaning for physicists to ponder.

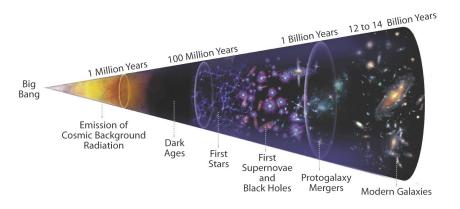
Ì


WMAP took a "baby picture" of the Universe- only 400000 yrs old.

The Seeds of Galaxies


Ì

These small perturbations in temperature are the fluctuations (smaller than 1 in a 100,000) that caused the large scale structures we see today. This is what formed galaxies. All of this happened only 400,000 years after the Big Bang.



The Isotropy Problem

- The CMB looks very much the same all over the sky
- Thus, regions A and B were very similar to each other when the radiation we observe left them
- But there has not been enough time since the Big Bang for them ever to have interacted physically with one another
- Why then do they look the same?

A Brief History of Time

Since Big Bang works well so far, we have confidence to think about very early times: t << 1 sec !

• Temperature and energies are *ultrahigh*

Q: How to probe such high energies? Hint: it's in the Great State of Illinois

Fermilab

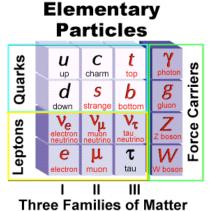
INNER SPACE / OUTER SPACE

Fermilab is a telescope!

Probes conditions in Universe at 10⁻¹² s Universe was 10¹² K hot! ...but also...

"The Universe is the poor man's accelerator" Probes conditions inaccessible at laboratories

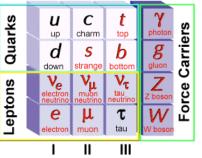
A Little Background Info


To better understand the early Universe, we need to talk about a few topics first:

- 1. Basic Particles
- 2. Matter and Anti-matter

Basic Particles

- There are three types of basic particles in nature
- Quarks matter - Building blocks of protons and neutrons
- Leptons matter – Electrons and neutrinos
- Force Carriers energy
 - Photons, gluons, gravitons?


Basic Particles

Quarks. Neutrinos. Mesons. All those damn particles you can't see. <u>That's</u> what drove me to drink. But <u>now I can</u> see them.

http://sol.sci.uop.edu/~jfalward/elementaryparticles/elementaryparticles.html

Elementary Particles

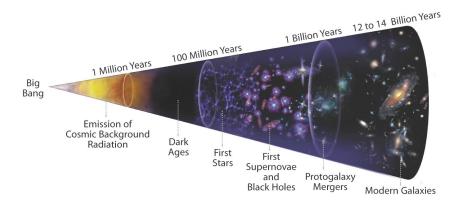
Three Families of Matter


The Universe is Made of Matter

- You, and I, and the Earth are all made of matter not anti-matter
- The Moon is made of matter, not anti-matter
- Local "neighborhood" in Milky Way is matter, gas between the stars
- The Universe is made of matter
- How did this come to be?

Matter & Anti-Matter

- Partner for each type of matter particle
 - Anti-electron=positron, anti-quarks, anti-neutrinos
- Anti-matter is stable by itself
 - Can have anti-protons, anti-atoms, anti-rocks, anti-people, anti-stars, anti-galaxies


Matter & Anti-Matter

Ì

- But when matter & anti-matter partners combine
 - Annihilation matter converted to energy – E=mc²
 - Example: paperclip + anti-paperclip annihilation
 Energy release equal to a small nuclear bomb!



A Brief History of Time

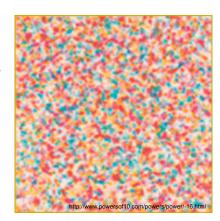
Quarks

• The basic particles that make up protons and neutrons (held together by "gluons")

Proton (charge +1) = 2 "up" quarks (+4/3) + 1 "down" quark (-1/3)

The First Instant (to 10⁻⁴³ sec)

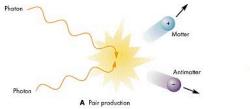
Neutron (charge 0) =

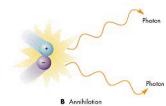

1 "up" quark (+2/3) +

2 "down" quarks (-2/3)

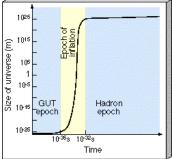
- Incredibly hot (more that 10^{32} K)
- Want a Nobel Prize? Develop a theory to describe this era of the Universe!

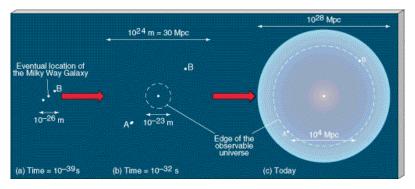
The GUT Era (until 10⁻³⁵ sec)


- GUT = "Grand Unified Theory"
- Sea of free quarks (and antiquarks) + photons + other basic particles
- Random fluctuations in density

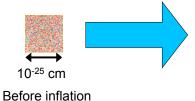


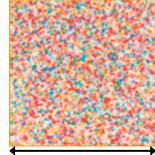
Matter and Anti-Matter


- In the early Universe, the photons were so energetic that photons could convert into matter/ anti-matter pairs
- The particles created would soon annihilate and convert back to energy


Inflation (10⁻³⁵ to 10⁻³² sec)

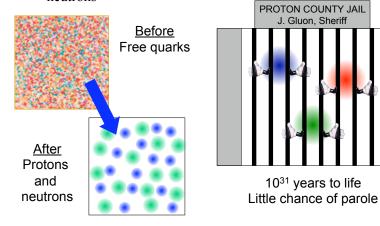
- Universe went through a period of extremely rapid expansion
- Expansion by more than a factor of **10⁵⁰**!!
- Areas that were close before inflation were now separated by millions of parsecs!


Inflation Solves the Isotropy Problem!


Regions that were close enough to interact in the early Universe were separated by inflation!

Origin of the CMB Fluctuations

- Early Universe: a sea of particles & energy
- Density was constantly fluctuating on microscopic scales
- Inflation: blew up microscopic fluctuations to galaxy-size



10²⁵ cm = 3 Mpc After inflation

Quark Confinement

- Ì
- 10⁻⁶ seconds: free quarks condensed into protons and neutrons

The seeds of Galaxies were due to?a) Large super structures in the early Universe.

- b) Nuclear strong force fields.
- c) Quantum fluctuations in quark density.
- d) Gravitational instabilities in the fabric of spacetime.

Question

e) Unclear reasons.

