Astronomy 150: Killer Skies

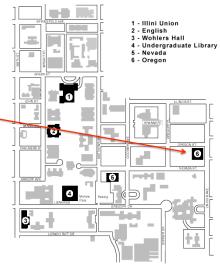
This Class (Lecture 20): Neutron Stars and Black Holes

<u>Next Class:</u> Gamma Ray Bursts

HW7 due on Sunday!

Night Obs/Computer labs due in class on Oct 26th. HW 2 due on the 26th. Exam 2 on the 30th!

Music: Blackhole Sun-Soundgarden


Don't Forget HW 2

- Orionids are the morning of Oct 21st.
- If you haven't finished HW2, make sure to leave your pan out over that night plus a day or so.
- It doesn't matter if it is cloudy or not.
- HW 2 due on the 26th at 11:59pm.

Computer Lab Help

- We are going to have to computer help sessions at the Oregon Lab.
- Today already happened but tomorrow too: 11:30am-12:45pm.

Outline

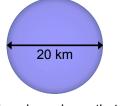
- What is leftover after a supernova?
 - Neutron star with a pulsar
 - Blackhole
- Cold War discovery

Supernova Leftovers

- Ì
- What's left of the star's core after a massive star supernova?

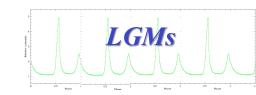
• A neutron star

- About 1.4 3 solar masses
- Very small diameter around 20 km!
- Composed of a sea of neutrons
 - Supported by neutron degeneracy pressure!
 - Teaspoon of neutron star material on Earth would weigh almost 1 billion tons!!!!
- Surface gravity 200 billion times that on Earth
- Escape velocity half the speed of light



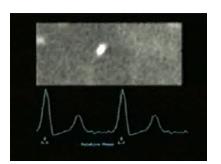
20 km

Neutron Stars

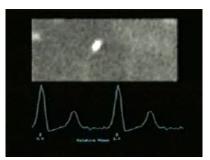


How do we know that Neutron stars truly exist?

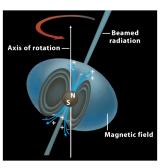
- In the late 1960s, Jocelyn Bell discovered radio pulses from the constellation Vulpecula that repeated regularly
 - Every 1.337... seconds
- What could it be?
- Perfect timing, but no real encoding of signal.
- Jokingly called LGMs, then Pulsars.


Jocelyn Bell Burnell

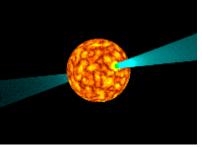
Anthony Hewish

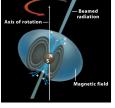

Pulsars

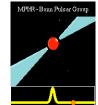
- What could it be?
 - Pulses were too fast to be a variable star
- Very precise, better than atomic clocks.
- Periods from 8.51s to 1.56 ms!


Pulsars

- Could they be something spinning?
 - Would have to be small to be spinning that fast
- They must be spinning neutron stars!

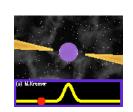

What are Pulsars?


- As neutron core collapses, its spin and magnetic field strength increases
- Typically
 - Surface field strength over 1 trillion times that of the Earth
 - Rotation rate up to 1000 times per second
 - Spin axis and magnetic field axis may not be aligned.



What are Pulsars?

- Intense beams of radiation emanate from regions near the north and south magnetic poles of a neutron star
- Magnetic field beams radiation into space
- If the Earth is in the beam's path, we see the pulsar



Kinda like a Lighthouse?

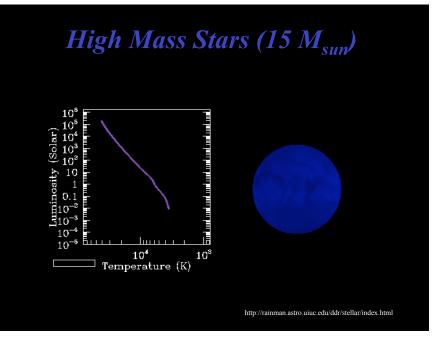
- These beams are produced by streams of charged particles moving in the star's intense magnetic field
- As the Pulsar gives energy to its surroundings, it slows down.
- The periods increase (few billionths of a second each day)

http://www.youtube.com/watch?v=jT2wkbPfUYc

Magnetars

• Spinning neutron stars with incredibly strong magnetic fields.

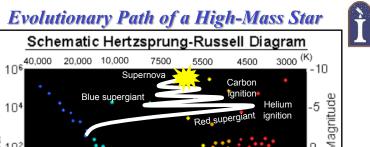
<u>Object</u>	<u>Strength</u> (Earth = 1)
Iron bar magnet	10 ²
Sustained lab field	10 ⁵
Strongest star	10 ⁶
Strongest lab field	107
Typical pulsar	10 ¹²
Magnetar	10 ¹⁵

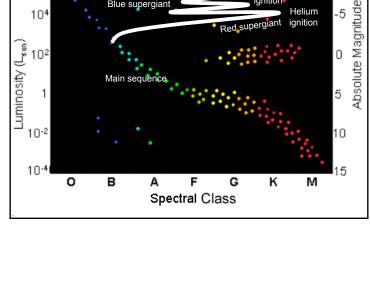

Pulsars

- Pulsars...
 - Now know of hundreds of pulsars.
 - Fastest known have periods of 1.5-3 ms (rotate 300-600 times per second!).
- Very active subject of research...
 - What is the structure of a neutron star?
 - What determines how fast they spin?
 - How do they beam emission?
 - Magnetars.

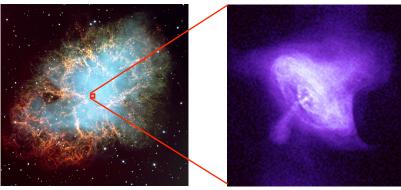
Death throes

- What triggers a supernova?
 - Hydrostatic equilibrium is lost, gravity wins
 - Iron core with M > M_{Chandra}
- What happens?
 - Quick core collapse overcoming electron degeneracy pressure.
 - Outer layers rebound off the core, explosion of envelope
- What are end products?
 - Enriched ejecta and compact neutron star (if core mass < 3 solar masses)

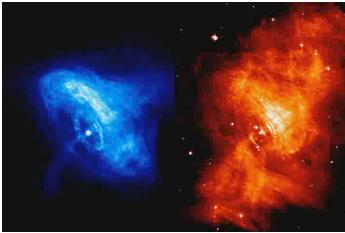




Question

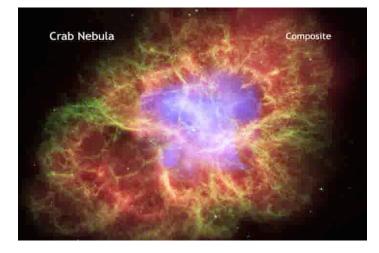

So what supports a neutron star from collapsing?

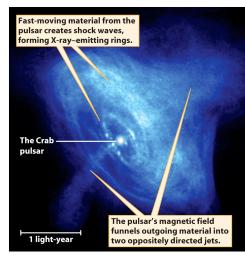
- a) Pressure from fusion
- b) Pressure from CNO fusion
- c) Electron degeneracy pressure
- d) Gravity pressure
- e) Neutron degeneracy pressure


Crab Nebula – Remnant of the Supernova of 1054

Optical - ESO

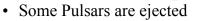
X-ray - Chandra


Crab Nebula – Remnant of the Supernova of 1054


http://chandra.harvard.edu/photo/2002/0052/more.html

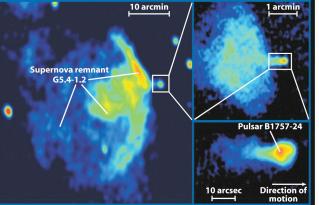
Crabby?

Do You Love the Crab?



Ì

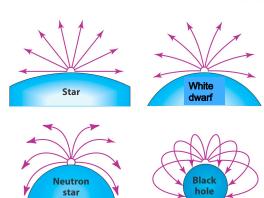
during the supernovae.


- Can outrun the explosion.
- This one is 600 km/s
- We'll come back to loose compact objects later.

Escaping Pulsars

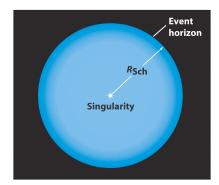

When Neutron Degeneracy Isn't Enough

- Maximum neutron star mass
 - About 3.0 M_{\odot}
 - Original star around $30 M_{\odot}$
- Beyond this mass, neutron degeneracy cannot stop gravity
- Nothing left to stop, so total collapse– gravity rules!
- A black hole
 - $-\mathbf{v}_{esc} > \mathbf{c}$

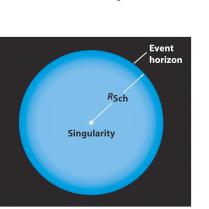

Black Holes

- Black holes inspire fear, awe, uncertainty, and bad science fiction
- Many people think that black holes are dangerous
 - That they suck matter in like "cosmic vacuums"
- Black holes follow the same laws of gravity as everything else

Now, Back to Black Holes


- When matter gets sufficiently dense, it causes spacetime to curve so much, it closes in on itself
- Photons flying outward from such a massive object arc back inward!

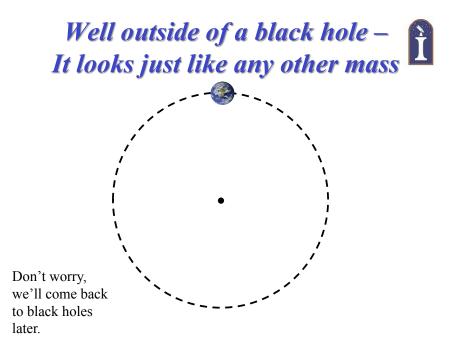
• Neither light or matter can escape its gravity, it is a **black** hole!


Black Hole

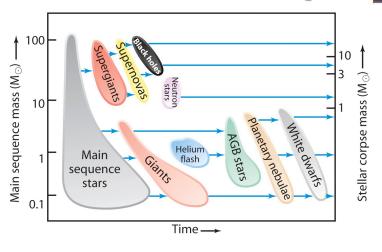
- The matter in a black hole collapses to a point called a **singularity**
- A black hole is separated from the rest of the Universe by a boundary, the **event horizon**
- Nothing can escape from within its radius
- This radius is called the Schwarzschild radius.

Black Hole

- The Schwarzschild radius is
- More massive black hole = larger the event horizon
 - $R_{\rm Sch} = 3 (M/M_{\odot}) \, \rm km$
 - If mass of an object is in space $< R_{Sch}$ then objects is a BH
 - For Earth
 - $R_{Sch} = 1 cm$
- The radius of no return
- Cosmic roach hotel


 $R_{Sch} = \frac{2GM}{c^2}$

Thought Question



What do you think would happen to the Earth if the Sun collapsed into a black hole?

- 1. Fall in directly
- 2. Slowly spiral in
- 3. Stay in its orbit
- 4. Slowly spiral away
- 5. Fly away in a straight line

Stellar Evolution Recap

http://www.youtube.com/watch?v=jT2wkbPfUYc 3:15+

Imagine

- Astronomers are the first to know.
- A clear detection of neutrinos surprised everyone
- Gamma and x-ray telescopes are quickly blinded by the bright light from the object
- Then in the night sky a star gets brighter and brighter, easily seen with the naked eye and still getting brighter.
- The first supernova in 400 years!

• The power grid collapses

- The sky around the star is blue!
- Gamma Rays have already destroyed the ozone layer, we just don't know it yet.
- Severe sunburn, but UV radiation will kill off phytoplankton, the base of the food chain
- A new mass extinction is happening!