
Astronomy 150: Killer Skies

### Moon Impact!

• NASA successfully impacted the moon this morning at 6:30am.

- Main objective was to look for water vapor in the plume of ejected material.
- Water on the Moon?





### Night Obs

Next Class:

Killer Supernova

Music: Supernova-Liz Phair

- Dates:
  - − Monday, Sept. 21<sup>st</sup> ✓

This Class (Lecture 17):

Supernova: The End of

Massive Stars

- − Tuesday, Sept. 22<sup>nd</sup> ×
- Wednesday, Sept. 23<sup>rd</sup> ✗
- − Thursday, Sept. 24<sup>th</sup> ×
- − Monday, Sept. 28<sup>th</sup>×
- − Tuesday, Sept. 29<sup>th</sup> ✓
- − Wednesday, Sept. 30<sup>th</sup> ✓
- − Thursday, Oct. 1<sup>st</sup> ×
- − Monday, Oct 5<sup>th</sup> ✓
- Tuesday, Oct 6<sup>th</sup> X
- − Wednesday, Oct 7<sup>th</sup> ✓
- − Thursday, Oct 8<sup>th</sup>×
- Next week until 1 more clear night.

Go to assignment page on class website for more info.

HW5 due on Sunday!

You **MUST** download worksheet <u>before</u> you go.

Can be cloudy, so check webpage before you go.

Turn in assignment in-class before Oct 26<sup>th</sup> or so.

### Question

Did you go to the Observatory yet?

- a) Yes, it was okay.
- b) Yes, it was cool!
- c) Yes, it was the highlight of my life so far!
- d) Yes, but it was boring.
- e) No, but I will do so as soon as I can, I promise. I had other things I had to do, but I really, really want to go and I will make it a **top** priority in my life!

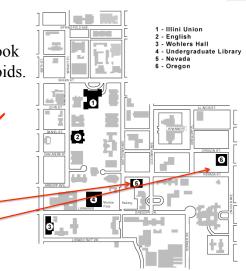
# Ì



### Computer Lab: 15% of Grade!

- Computer labs to look for real killer asteroids.
- Dates:
  - Monday Sept 28<sup>th</sup> ✓
  - Monday, Oct  $5^{th} \checkmark$
  - Monday, Oct 12th
- Places:
  - Nevada Labs
  - Oregon Labs

• Limited space each day, so you <u>MUST</u> have a reservation for that day and that lab!


Ì

- See Assignments webpage for more info and to sign up!
- Lectures are cancelled for those dates.

### Computer Lab: 15% of Grade!



- Computer labs to look for real killer asteroids.
- Dates:
  - Monday Sept 28<sup>th</sup> 🖌
  - Monday, Oct  $5^{\text{th}}$
  - Monday, Oct 12th
- Places:
  - Nevada Labs -
  - Oregon Labs-



### Don't Forget HW 2

- Orionids are the morning of Oct 21<sup>st</sup>.
- If you haven't finished HW2, make sure to leave your pan out over that night.
- It doesn't matter if it is cloudy or not.



### Outline

- Massive stars do not live very long.
- Massive stars- making heavy elements.
- Supernova

# <section-header><section-header>

http://www.youtube.com/watch?v=DU4hpsistDk

# 2012: End of Mayan Calendar?

- I'm not going to say too much about this, but the concept is bogus, all pseudoscience.
- Except maybe kinda Solar weather, which is sometimes mentioned.
  - Although 2012 is 1 year before solar maximum, the 1859 CME was 1 year before maximum.
  - Still it doesn't mean anything.
  - We have been hit by bad space weather many times in the past and will again in the future.
  - Not the end of the world.
- Science aside though, it should make a fun movie:

http://www.youtube.com/watch?v=Hz86TsGx3fc

# Space Weather on Weather?

- There is some correlation between the Solar Cycle and weather on Earth.
- Sunspots reduce brightness of Sun, but surrounded by brighter region, so we have a net gain.
- Sun is actually brighter when covered in spots.
- The Maunder minimum: 1645-1715 (hardly any spots)
  - Lower than average temperatures
  - Little Ice Age: river Thames froze over
  - Sun brightness only one factor though, also more than usual volcanism





- All of our satellites are knocked out.
- Electrical transmission lines overload and melt, causing wildfires.

Imagine

- Half the planet is without power.
- Thousands die the first night...
- Then, more sunspots...
- And you can't remember what Leslie mentioned about CMEs....

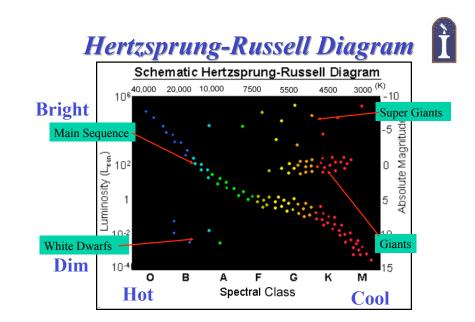
### Imagine

- Astronomers are the first to know.
- A clear detection of neutrinos surprised everyone
- Gamma and x-ray telescopes are quickly blinded by the bright light from the object
- Then in the night sky a star gets brighter and brighter, easily seen with the naked eye and still getting brighter.
- The first supernova in 400 years!

### Top 10 Ways Astronomy Can Kill you or your Descendents

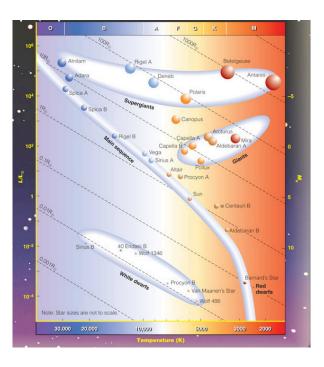
1. Impacts!

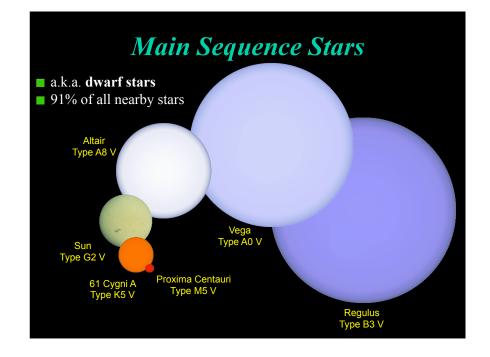
Splat.. Boom... Watch out for space rocks!

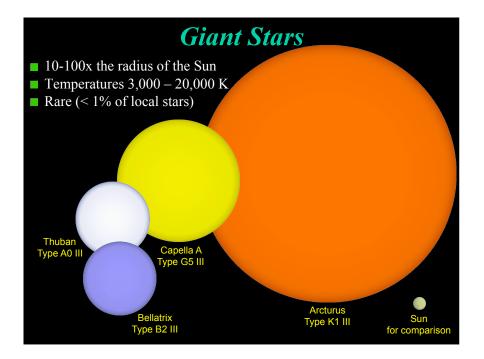

- Solar Evolution.
  MS to Red Giant to White Dwarf
- 3. Coronal Mass Ejections Cold winter days..
- 4. Supernova in your face! Super sunburn.

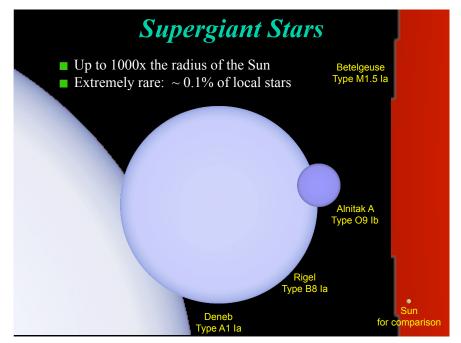
- The power grid collapses
- The sky around the star is blue!
- Gamma Rays have already destroyed the ozone layer, we just don't know it yet.
- Severe sunburn, but UV radiation will kill off phytoplankton, the base of the food chain
- A new mass extinction is happening!

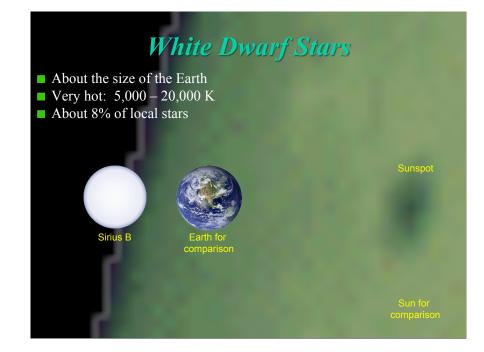
# Top 10 Ways Astronomy Can<br/>Kill you or your Descendents


4. Supernova in the face!


Extreme energy! Can destroy the ozone layer!



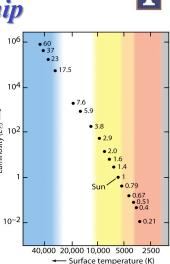


http://www.youtube.com/watch?v=0J8srN24pSQ


HR Diagram





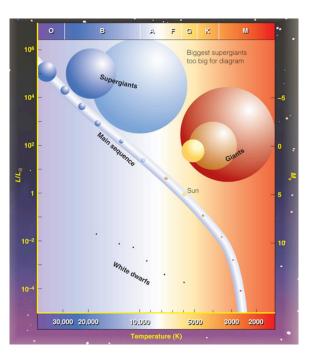









### The Mass-Luminosity Relationship


- Luminosity is proportional to Mass
- Larger range in luminosity than mass (10<sup>6</sup> vs. 100)
- Higher mass = higher luminosity, higher temp, and large radius
- Lower mass = lower luminosity, lower temp, and smaller radius
- Only on Main Sequence!



### HR Diagram

Sun is converting 700 million tons of H into 695 million tons of He every second!

BUT, a 20 solar mass star is using it's fuel 36,000 times faster!

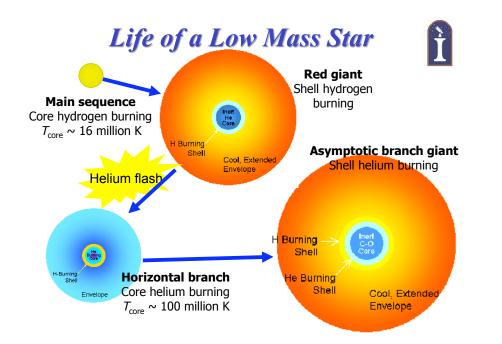


### Question

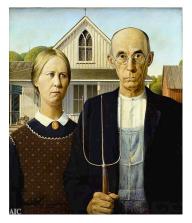
A massive star on the main sequence is where on the HR diagram?

- a) Upper right.
- b) Upper left.
- c) Bottom right.
- d) Bottom left.
- e) Middle.






• <u>Star formation</u>


- Take a giant molecular cloud core with its associated gravity and wait for 10<sup>4</sup> to 10<sup>7</sup> years.

- Main sequence life (depends on mass!)
- Few x 10<sup>6</sup> years to more than age of Universe - Thermonuclear burning of H to He
- Death
- Exhaust hydrogen
- Red giant / supergiant
- White dwarfs, supernova neutron stars, black holes





### **Stellar Lifestyles**

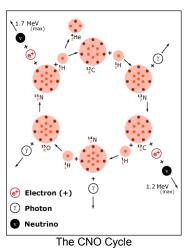


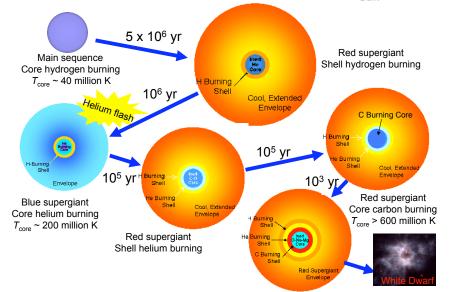


Low-mass stars

Massive stars

### Life Fast, Die Young

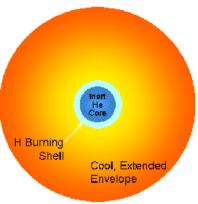

- High-mass stars: "gas guzzlers"
  - Very bright
  - Consume hydrogen fuel supply very quickly
  - Only live for millions of years on the main sequence


| Mass<br>(M <sub>☉</sub> ) | Surface temperature<br>(K) | Spectral class | Luminosity ( $L_{\odot}$ ) | Main-sequence lifetime<br>(10 <sup>6</sup> years) |
|---------------------------|----------------------------|----------------|----------------------------|---------------------------------------------------|
| 25                        | 35,000                     | 0              | 80,000                     | 4                                                 |
| 15                        | 30,000                     | В              | 10,000                     | 15                                                |
| 3                         | 11,000                     | А              | 60                         | 800                                               |
| 1.5                       | 7000                       | F              | 5                          | 4500                                              |
| 1.0                       | 6000                       | G              | 1                          | 12,000                                            |
| 0.75                      | 5000                       | K              | 0.5                        | 25,000                                            |
| 0.50                      | 4000                       | М              | 0.03                       | 700,000                                           |

### More than one way to fuse

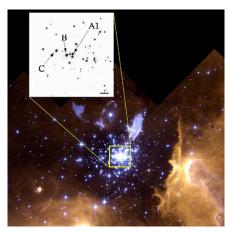
# Ì

- High-mass stars do fusion by a different process
- Called the *CNO cycle* 
  - Still converts 4 hydrogens into 1 helium
  - Uses a carbon nucleus as a catalyst
- Quicker reaction
- Requires very high temperatures in the core
  - More than low-mass stars (like the Sun) can produce





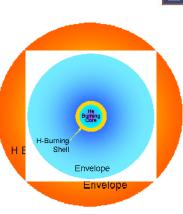

### Evolution of an Intermediate-Mass (~4 M<sub>Sun</sub>) Star


### When the Hydrogen Runs out?

- Similar to lower-mass stars in the first few stages, just quicker.
- When the hydrogen supply runs out the core starts to contract
- Hydrogen shell burning (around the helium core) starts
- The outer envelope expands quickly becoming a red <u>supergiant</u>



### For High Mass Stars


- For stars with an initial mass of more than 10 solar masses
- The final state will no longer be a white dwarf.
- Let's follow more carefully the life path of a high mass star- it's short sweet and ends with a bang!

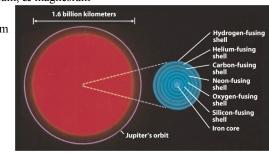


A1: A 150 solar mass star!

### The Supergiant Phase

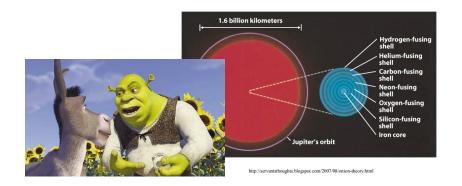
- Outer envelope of the star grows larger and cooler
  - Up to 5 AU in size!
  - Unlike a low mass star, brightness does not increase dramatically
- Eventually, core is hot enough that it can fuse helium atoms together (non-degen gas, so no flash)
  - Star contracts and heats up
  - Now a blue supergiant

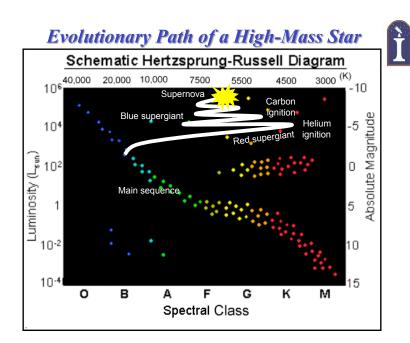



### Question

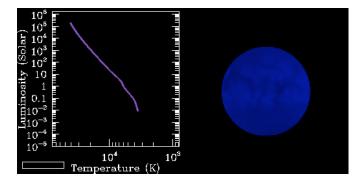
What causes a high-mass star to leave the main sequence?

- a) Just gets tired of the main-stream media and lifestyle.
- b) Runs out of hydrogen in the core.
- c) Runs out of helium in the core.
- d) A shell around the core begins to burn helium.
- e) A shell around the core begins to burn hydrogen.


# Massive Stars: Cycles of Fusion


- Helium fusion is not the end for massive stars
- Cycles of core contraction, heating, ignition
- Ash of one cycle becomes fuel for the next
  - hydrogen ⇒ helium
  - − helium  $\Rightarrow$  carbon & oxygen
  - carbon ⇒ neon, sodium, & magnesium
  - neon ⇒
    oxygen & magnesium
  - oxygen ⇒
  - silicon & sulfur
  - silicon ⇒ iron



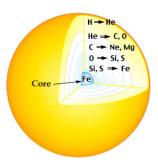

## Massive Stars: Cycles of Fusion

- Onion-skin like structure develops in the core
- Has layers.... like an Ogre..



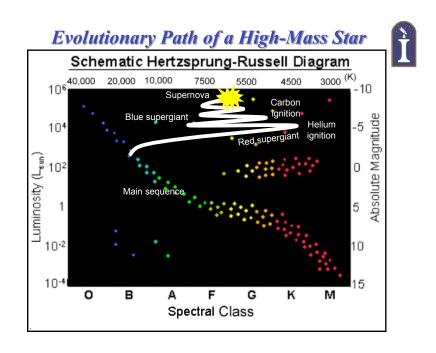


# High Mass Stars (15 M<sub>sun</sub>)




http://rainman.astro.uiuc.edu/ddr/stellar/index.html

### Iron – The End of the Road


- Supergiants "burn" heavier and heavier atoms in the fusion process
- Each stage faster than the last
- After iron no fuel left!
  - It requires energy to produce heavier atoms

| Stage     | Temperature   | Duration     |
|-----------|---------------|--------------|
| H fusion  | 40 million K  | 7 million yr |
| He fusion | 200 million K | 500,000 yr   |
| C fusion  | 600 million K | 600 yr       |
| Ne fusion | 1.2 billion K | 1 yr         |
| O fusion  | 1.5 billion K | 6 mo         |
| Si fusion | 2.7 billion K | 1 day        |



Ì

Values for a 25M<sub>Sun</sub> star

