Astronomy 122

Night Observing

This Class (Lecture 7):

Telescopes and Light

Next Class:

How to do a jump shot

Homework #3 due Sun!

Music: Kelly Watch the Stars – Air

Feb 5, 2008 Astronomy 122 Spring 2008

• Night observing starts next week!

- Feb 11-14th: Monday-Thursday
- Feb 20th: Wednesday (special Lunar Eclipse!)
- Feb 25-28th: Monday-Thursday
- Don't wait until last minute (never know about Illinois weather)!
- Observing sessions are from 7:30pm-9:30pm (allow 45 mins to complete)

Feb 5, 2008

Astronomy 122 Spring 2008

Night Observing

- Sign up for sessions at http://www.astro.uiuc.edu/classes/nightobs/
- Check weather status before you go at http://www.astro.uiuc.edu/classes/nightobs/status.php
- Download Astro 122 worksheet at http://eeyore.astro.uiuc.edu/~lwl/classes/astro122/spring08/hw.html

Outline

Feb 5, 2008 Astronomy 122 Spring 2008 Feb 5, 2008 Astronomy 122 Spring 2008

Astronomy as a Hobby

• Did you know you can see a galaxy 2½

million lightyears away with your unaided eyes?

• Or that you can see craters on the Moon with binoculars?

Feb 5, 2008

Astronomy 122 Spring 2008

Learn The Sky

• Learn the sky with the naked eye

- Download star charts from Sky & Telescope
- Use your planisphere from the book
- Generate sky charts with the Starry Night software that came with your textbook

Your First Steps...

Read

- The night sky is beautiful to behold, but astronomy is a learning hobby
- You can find good guides to the night sky at your local library or bookstore

- Get a copy of Sky & Telescope from the library
 - Offers a big evening-sky map for beginners
 - Practical observing tips

Feb 5, 2008

Astronomy 122 Spring 2008

Start With Binoculars

- Binoculars are an ideal first telescope
 - Wide field of view, making it easy to find your way around
 - Relatively inexpensive
 - Widely available
 - Easy to carry and store
 - Allow you to easily see lunar craters, Jupiter's moons, and the brighter star clusters, galaxies, and nebulae
 - The larger the front lenses are the better

Feb 5, 2008 Astronomy 122 Spring 2008 Feb 5, 2008

Seek Out Others

- There are two amateur astronomy clubs here
 - University of Illinois **Astronomical Society**
 - Champaign-Urbana **Astronomical Society**

- Attend star parties where you can meet members and discuss astronomy
 - Try out different types of telescopes
 - Get advice

Feb 5, 2008

Astronomy 122 Spring 2008

Relax and Have Fun!

- This is the most important step!
- Take pleasure in whatever your eves, binoculars, or telescope can show you
- The more you look, the more you will see, and the more you will become at home in the night sky
- Set your own pace, and revel in the beauty and mystery of our amazing universe!

Your Own Telescope

• When you're ready, its time for your own telescope

- Don't skimp on quality, you'll regret it later
- What do you want?
 - Solid, steady, smoothly working mount
 - High quality optics
 - Large aperture but not too large, you have to carry it!
 - The best telescope for you is the one you'll use most!

Feb 5, 2008

Astronomy 122 Spring 2008

Functions of a Telescope

12

- Telescope functions
 - Collect light over a large area
 - Resolve image onto an eyepiece or a scientific instrument
- Can do this with either lenses (refracting) or mirrors (reflecting)
- Three priorities (in order)
 - Gathering light
 - Angular resolution
 - **Magnification**

Astronomy 122 Spring 2008 Astronomy 122 Spring 2008 Feb 5, 2008 Feb 5, 2008

First, Light Gathering

- Top priority since most celestial objects are dim
- Telescope = "light bucket"
- Key: *collecting area*
- Human eye ~ 5 mm,
- Subaru telescope mirror 8.3 m
 - 3 million times the area of your eye!

Feb 5, 2008

Astronomy 122 Spring 2008

Question

If I want to contact an alien civilization near Orion (1500 light years away), which of the following will give the fastest communication?

- a) Gamma-rays
- b) Red light
- c) X-rays
- d) Radio waves
- e) All of the above travels at the speed of light.

The electromagnetic spectrum

- Visible light is only a tiny portion of the full electromagnetic spectrum
- Light comes in many colors that you can not see! The color x-ray or color radio or color microwave.
- Divisions between regions are really only from biology or technologies.

Where Do Colors Come From?

- The color of light is determined by its wavelength
- Visible light has extremely small wavelengths
 - Wavelengths range from 400 nm (violet light) to 700 nm (red light)
- Colors, from longest wavelength to shortest: red, orange, yellow, green, blue, violet
- But just as valid, x-ray is a color, just higher energy.

Telescopes

- A telescope collects light
- The larger the **aperture**, the more light can be collected in a given amount of time

Secondly, Angular Resolution

- Reveal details of objects
- Angular resolution:
 - Measures finest detail that is not smeared out
 - Smallest angle for which two stars aren't smeared together to one
 - e.g., human eye resolution = 1/60th of a degree
 - Hubble Space Telescope resolution < 1/36,000th of a degree

Example of Angular Resolution

Feb 5, 2008

Astronomy 122 Spring 2008

Resolve This

- What is the limitation on how well a telescope can resolve objects?
 - The size of the telescope, silly

Example of Angular Resolution

Feb 5, 2008

Astronomy 122 Spring 2008

Resolve This

• The best resolution of a telescope is $\theta_{\rm diff}$ =2.5x10⁵ λ /D

 λ and D in meters, then θ in arcseconds

- We want the angle to be small as possible
- So, again we want a large telescope!
- The Keck 10 meter has a θ_{diff} = 0.0125 arcsec with $\lambda = 500 \text{ nm} (5 \times 10^{-7} \text{ meters})$

- The shorter the wavelength of light the better!

Resolve This

Twinkle, Twinkle Little Star

• The best resolution of a telescope is

$$\theta_{diff}$$
=2.5x10⁵ λ /D

 λ and D in meters, then θ in arcseconds

- The Keck 10 meter has a θ_{diff} = 0.0125 arcsec in optical
- A 10 meter radio telescope ($\lambda = 1$ cm), then $\theta_{diff} = 250$ arcseconds!
- But, there is another limitation!
 - The atmosphere

Feb 5, 2008

Astronomy 122 Spring 2008

- Turbulence in the atmosphere "jiggles" image
- We see it as stars "twinkling"
 - A good atmosphere will allow $\theta \sim 1$ arcsec.
 - A great atmosphere will allow $\theta \sim 0.3$ arcsec.
- So for modern telescopes, we are limited by the atmosphere.

Feb 5, 2008

Astronomy 122 Spring 2008

Lastly, Magnification

- Makes the object appear larger
- Useful for studying detail
- Least important issue
 - If you don't have the other two, this is not at all relevant
 - No good to magnify a blurry
 - image
- Magnification is ratio of focal length of telescope and focal length of eyepiece

$$f_{tel}/f_{eye} = M$$

Question

Which of the following is the most important aspect of a modern research telescope.

- Magnification
- Collecting area
- Resolution
- Expense
- e) None of the above.

In The End Size Does Matters

• Both light collecting and resolution improve as the diameter of the scope – its lens or mirror – increases

Bigger is better!

Bigger Is Better!

Feb 5, 2008

Astronomy 122 Spring 2008

Feb 5, 2008

Astronomy 122 Spring 2008

The atmosphere absorbs some wavelengths and not others

Telescope Types

- Optical (visible light)
 - Refracting
 - Reflecting
- •Radio, infrared, ultraviolet
 - Reflecting
- •X-ray
 - Reflecting (grazing incidence)

Feb 5, 2008

Refraction

- Light travels more slowly in transparent materials than it does in vacuum
- When passing from one medium to another (e.g. air to water), light is bent (refracted)

Feb 5, 2008

Astronomy 122 Spring 2008

Refracting Telescopes: Lenses

- Use Lenses
 - Curved glass
 - Light bent to focus
- Problems:
 - Lenses focus colors differently
 - Sag of lens from gravity
 - Large lens distorted as it hangs
 - Limits lens size
 - Limited wavelengths

Feb 5, 2008

Astronomy 122 Spring 2008

The Largest Refractor

- At Yerkes Observatory near Chicago
- 40 inch diameter lens, 63½ feet long!

Telescope mounts

Altitude-azimuth (alt-azimuth)

Feb 5, 2008

Celestial

Morehead PlanetariAnstronomy 122 Spring 2008

Reflecting Telescopes

Í

Hubble Telescope Mirror (2.4 m)

- Use Mirrors
 - Sag not a problem support the mirror from below
 - Parabolic mirror gives good focus
- Today, all large professional telescopes are reflectors

Keck Telescope Mirror (10m)

The Largest Reflector

- Keck Observatory on Mauna Kea in Hawai'i
- Twin 10-meter reflecting telescopes
- Completed 1993 & 1996

Gemini Telescopes

Light Pollution

 Another problem for astronomers is light pollution

- City lights raise the "background light" level
- Makes it more difficult to collect light from stars

• Twin telescopes

• One in Hawaii, one in Chile

• 8-meter mirrors

Feb 5, 2008

Astronomy 122 Spring 2008

Feb 5, 2008

Astronomy 122 Spring 2008

Twinkling & Light Pollution

How do we combat these problems?

Remote Mountains

- One solution: Build telescopes at sites high, dry, and away from civilization
- While this solves the scientific problems, it introduces its own complications
 - Providing facilities
 - Environmental impact
 - Cultural conflicts

Feb 5, 2008 Astronomy 122 Spring 2008 Feb 5, 2008

Mauna Kea, Hawai'i

• Mauna Kea is the best place on Earth

for astronomical telescopes

- High elevation
- Far from urban lights

- Reasonably easy access
- Generally good weather
- Mauna Kea is also a sacred place
- Also an environmentally sensitive area

Feb 5, 2008

Astronomy 122 Spring 2008

Adaptive Optics

- If you can observe a star quickly, and change the mirror to correct for the atmosphere you can observe closer to the diffraction limit of the telescope.
- Is working on many telescopes now.
- If no star nearby, can make one with a laser.

Light Detection

Once light collected and focused need detector

Human eye— just look

- Least sensitive (1% of photons)
- No permanent record
- Only optical wavelengths

Photographic film

- Telescope as camera
- · Accumulates light: see dimmer objects
- Provides a permanent record
- Small efficiency (a few % of photons)
- Non-linear response

http://www.pandia.com/graphics/hemera/womanandchildlooking.jpg http://www.sundu.co.kr/telescope/camera/main.gif

Light Detection

Once light collected and focused need detector

Electronic "film" (CCD)

- Charged Coupled Device
- Like Digital camera/camcorder
- Photons hit silicon chip and electrons kicked-out
- One measures the electrons created in a pixel.

Hubble Telescope CCD

Light Detection

Once light collected and focused need detector

Electronic "film" (CCD)

- About 80% photons detected
- Much more sensitive
- Detector of choice!
- All modern professional astronomy done this way— costly to make large CCDs
- Bonus: digital data great for computers!

© 2006 Pearson Education, Inc., publishing as Addison Wesley

Visible

Feb 5, 2008

Hubble Telescope CCD

Astronomy 122 Spring 2008

Invisible Astronomy

 Astronomers want to observe all types of light

- To see into the dustenshrouded regions of newly-forming stars
- To peer into the heart of the Milky Way itself
- To study the remains of solar-type stars
- To detect the emission from gases heated to millions of degrees by the powerful explosions of dying massive stars

Feb 5, 2008

Astronomy 122 Spring 2008

Tycho's Supernova

Radio telescopes

Ì

First detection of cosmic radio sources by Karl Jansky at Bell Labs (1932)

Astronomy 122 Spring 2008

Radio telescopes

Pioneering work by Grote Reber in back yard, Wheaton, Illinois.

Arecibo Observatory, Puerto Rico

Feb 5, 2008

Why?

Astronomy 122 Spring 2008

Very Large Array (VLA), NM

CARMA

millimeters – frequency of 220 GHz. Works night and day.

Astronomy 122 Spring 2008

Opaque Atmosphere

- Ì
- The atmosphere blocks some wavelengths
- Must observe some wavelengths from space!

Hubble Space Telescope

• 2.5 meter reflecting telescope in space

- Above the atmosphere
 - No "twinkling" effects
 - No light pollution

Feb 5, 2008

Astronomy 122 Spring 2008

Spitzer Space Telescope

- 0.85 meter infrared telescope
- Launched August 2003
- Cooled to near absolute zero so that its own heat doesn't confuse the results

James Webb Space Telescope

- The next space telescope 2011
- Observe in the near and mid-infrared
- Will be the biggest telescope in space –
 6 meters! (Must fold up for launch)
- Will take 3 months to reach position no service missions

Feb 5, 2008

Astronomy 122 Spring 2008

Chandra X-ray Observatory

Question

Which of the following is **not** a reason to place telescopes in space?

- Can put the biggest telescopes in space.
- There is no light pollution.
- Can observe at wavelengths that are blocked by the Earth's atmosphere.
- There is no Atmospheric "twinkling".

Feb 5, 2008

Astronomy 122 Spring 2008

SOFIA

- Stratospheric Observatory For Infrared Astronomy (SOFIA)
- Modified Boeing 747
- Operation height: 39000 to 45000 ft (11.8 to 13.7 km)
- 2.7m telescope
- Stratosphere is high enough to observe infrared
- Currently in air testing

Astronomy 122 Spring 2008

Feb 5, 2008