Astronomy 122

TextBook

• TIS has the books in now.

• If you bought it earlier without the extras, you can bring in you receipt for iclicker rebate, planisphere, and Starry Night software.

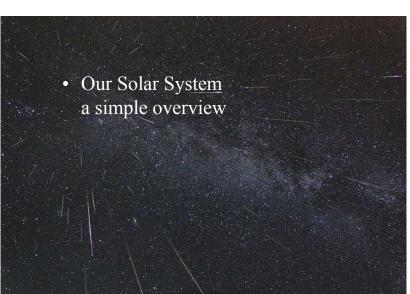
This Class (Lecture 6):

Next Class:

Our Solar System

Telescopes

Homework #2 due Sun!


Music: Venus as a Boy – Bjork

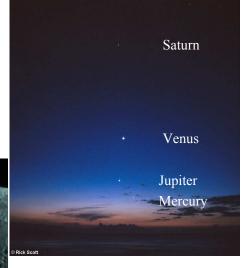
Jan 31, 2008 Astronomy 122 Spring 2008

Jan 31, 2008

Astronomy 122 Spring 2008

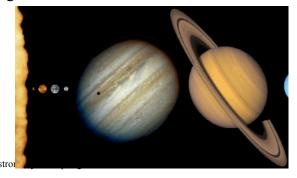
Outline

Ì


The Planets

• In ancient times, people noted five bright "stars" that moved through the constellations of the Zodiac over time

• These "stars" were called *planets*, from Greek for "wanderers"


ing 2008

http://antwrp.gsfc.nasa.gov/apod/ap990325.html http://antwrp.gsfc.nasa.gov/apod/ap001014.html

Jan 31, 2008

Names of the Planets

- Ì
- Planets were given the names of Roman/Greek gods
 - Mercury (Hermes) Messenger God (fast!)
 - Venus (Aphrodite) Goddess of Beauty (brilliant!)
 - Mars (Ares) God of War (red!)
 - Jupiter (Zeus) King of the Gods
 - Saturn (Cronus)
 - Father of Zeus

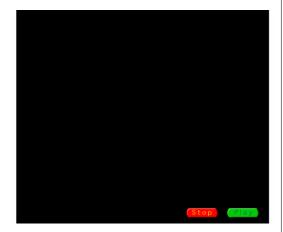
Jan 31, 2008

21st Century View

- Six families of the solar system
 - Star
 - Rocky planets
 - Asteroid belt
 - Gas giant planets
 - Kuiper belt
 - Oort cloud

What's this Picture of?

http://www.whfreeman.com/discovering/DTU/EXMOD36/F3609.HTM


Jan 31, 2008

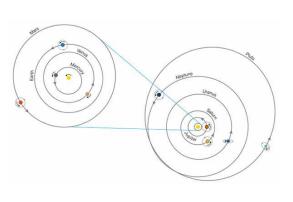
Astronomy 122 Spring 2008

Planetary Orbits

Ì

- Orbital (and most rotational) motions in solar system are counter clockwise in a flattened disk
- Orbits are actually close to circles, except Mercury

Astronomy 122 Spring 2008


Planetary Orbits

Planets Dance

 Orbital (and most rotational) motions in solar system are counter clockwise in a flattened disk

 Orbits are actually close to circles, except Mercury.

Jan 31, 2008

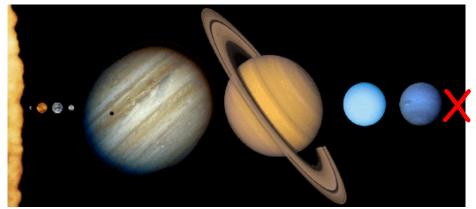
Astronomy 122 Spring 2008

http://janus.astro.umd.edu/javadir/orbits/ssv.html

Jan 31, 2008

Astronomy 122 Spring 2008

Question


What do you think the orbit of planets tell us?

- a) Nothing
- b) It's just astronomical chance that they are going the same way.
- c) The planets and the asteroids may have been one single massive planet that broke up.
- d) Something fundamental about the origin of the Solar System.
- e) The Solar System is somehow related to a giant spinning top.

A Sense of Scale

• Most pictures of the Solar System look something like this...

http://www.jpl.nasa.gov/galileo/sepo/education/nav/se2_oif

Astronomy 122 Spring 2008

Jan 31, 2008 Astronomy 122 Spring 2008

Question

What was wrong with this picture?

- Earth is too big.
- The asteroids not included.
- The separations are not to scale.
- This conjunction of planets will destroy the Earth.
- Not drawn to scale.

Jan 31, 2008

Astronomy 122 Spring 2008

The Sun

• Dominates the solar system

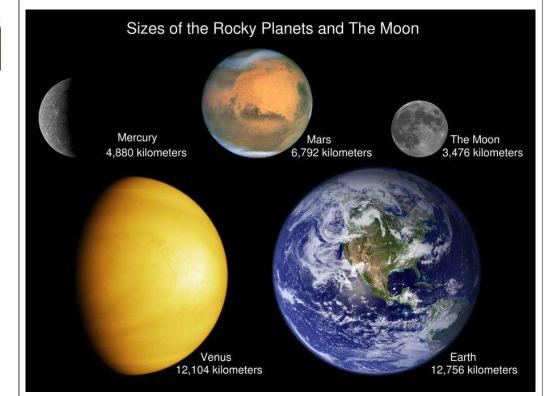
- 99.85% of the total mass

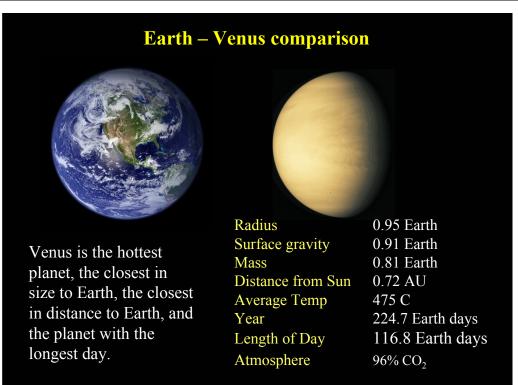
• Without the Sun's energy, life on Earth could not exist

• But the Sun is a fairly typical star

> - Understanding the Sun is vital to unlocking the secrets of the stars

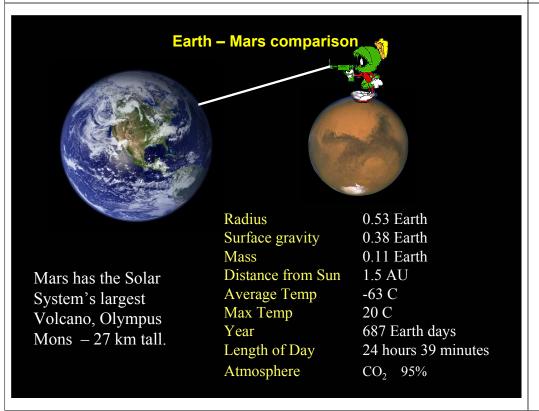
Jan 31, 2008


Astronomy 122 Spring 2008


The Terrestrials

- Mercury, Venus, Earth, & Mars
 - Plus the Moon. if you want
- The closest planets to the Sun
- Small bodies, made mostly of rock and iron
- Very similar to each other in overall composition and structure
- Vastly differing surface conditions

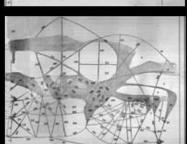
Turns Out that Venus is Hell



- The surface is hot enough to melt lead
- There is a runaway greenhouse effect
- There is almost no water
- There is sulfuric acid rain
- Not a place to visit for Spring Break.

Jan 31, 2008

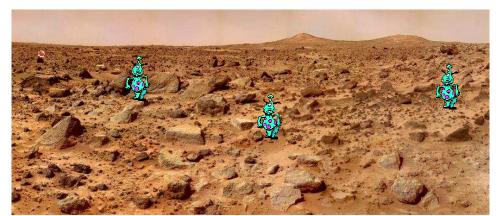
Astronomy 122 Spring 2008



Percival Lowell's Canals

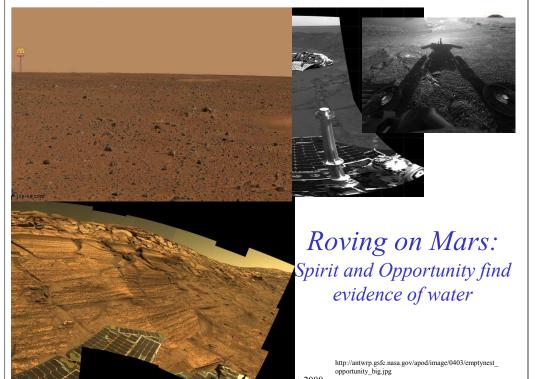
- Evidence for intelligent life?
- Mapped the civilization.
- Influenced culture.

Martian "canals" as mapped by Percival Lowell in the late 1800s


Jan 31, 2008

The Surface of Mars

- Mars is a desert!
- Iron oxide in soil gives reddish cast.

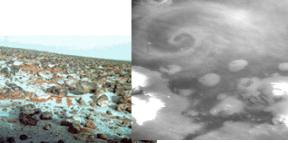


View of "Twin Peaks" from Mars Pathfinder

Jan 31, 2008

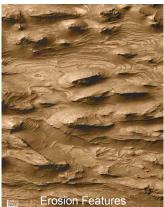
Astronomy 122 Spring 2008

http://www.grc.nasa.gov/WWW/PAO/html/marspath.htm



Water on Mars

- There is water on Mars
 - North and south polar caps (mostly CO₂)
 - Some water vapor in the air
 - Frost on rocks
 - Clouds (ice crystals)
- No liquid water now


Liquid water on Mars?

- Water erosion features visible from space
- Atmospheric pressure too low for liquid water to exist
- Perhaps at some point in the past?

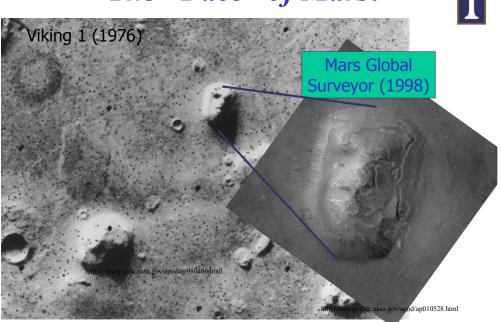
Jan 31, 2008

Jan 31, 2008

"Islands"

Flood erosion

Mars' Watery Past



Jan 31, 2008

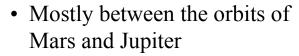
Astronomy 122 Spring 2008

The "Face" of Mars?

Astronomy 122 Spring 2008

Astronomy 122 Spring 2008

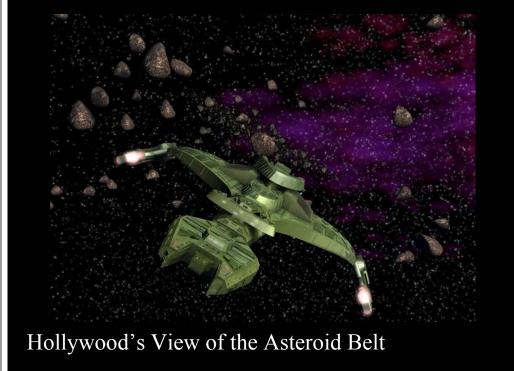
Other Faces


Other Places

Mars Global Surveyor (1998)

The Asteroids

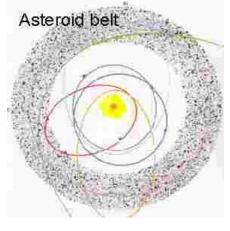
- Rocky debris left over from the formation of the solar system
- Some of the most ancient rocks in the solar system
- They hold the key to understanding its formation


Jan 31, 2008

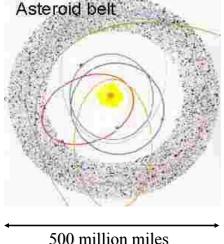
Astronomy 122 Spring 2008

http://www.solarviews.com/cap/mgs/heart.htm

Jan 31, 2008


The possibility of successfully navigating an asteroid field...

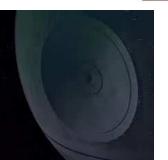
- Actually, NASA has sent many space probes into and through the Asteroid Belt
- Unlike in Star Wars, the Asteroid Belt is not that crowded
- Average separation between sizable asteroids is 10 million km!

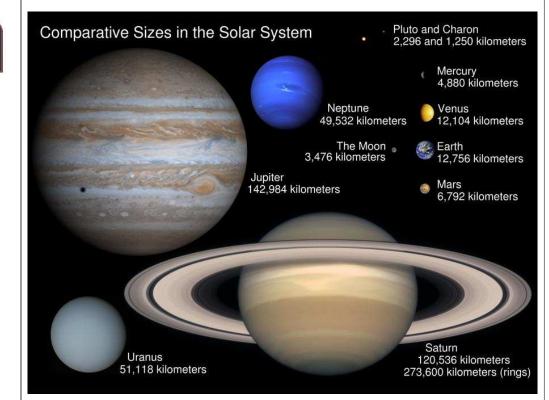

Jan 31, 2008

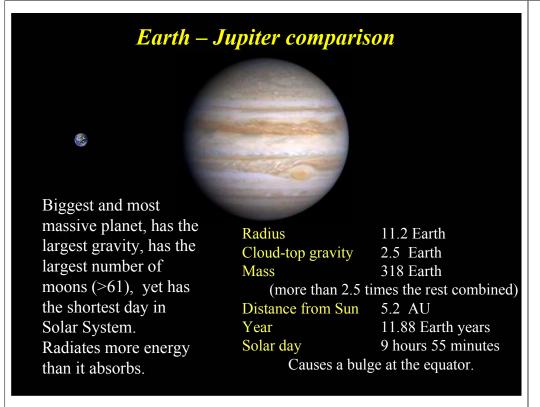
Astronomy 122 Spring 2008

Thousands of asteroids ...

On average, about a million miles apart!


Scientific View of the Asteroid Belt


Jan 31, 2008

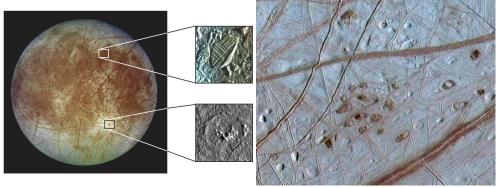

Astronomy 122 Spring 2008

Destroyed... by the Empire

- Are the asteroids a destroyed planet? No
 - Combined, the asteroids have a mass about 0.1% that of the Earth
 - Less than 10% that of our Moon
- The asteroids might be a *failed* planet
 - Jupiter's gravity kept the asteroids from coalescing into a planet
 - Jupiter probably ejected many asteroids from the Solar System

The Galilean Moons

- Europa is now thought to be one of the best options for life in our Solar System.
- But, Ganymede and Callisto are contenders.



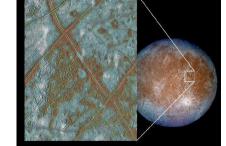
Jan 31, 2008

Astronomy 122 Spring 2008

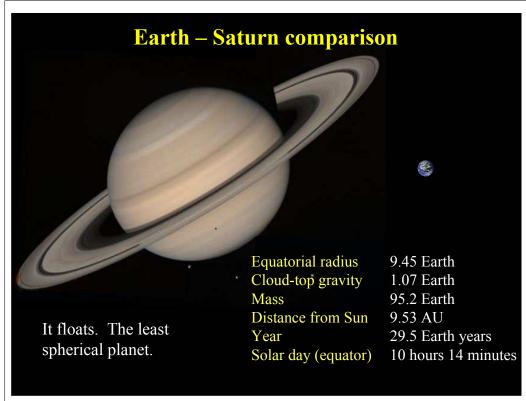
Europa

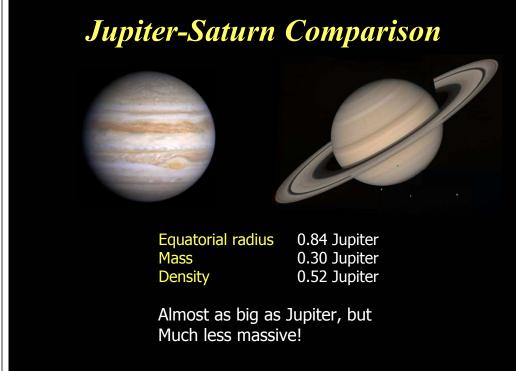
- Slightly smaller than our Moon.
- Icy crust 5 km thick. Can protect life against magnetic fields.
- Evidence for deep (50 km!) liquid water ocean beneath crust remains liquid from tidal forces from Jupiter
- Cracks and fissures on surface upwelling?

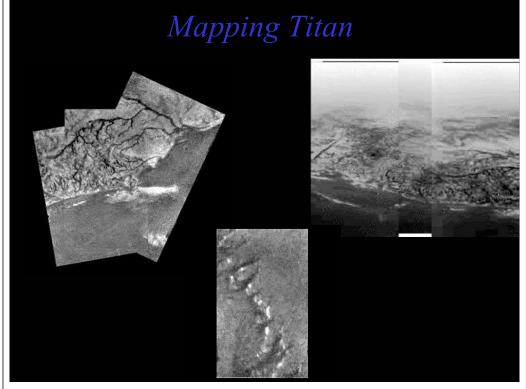
Astronomy 122 Spring 2008 Jan 31, 2008

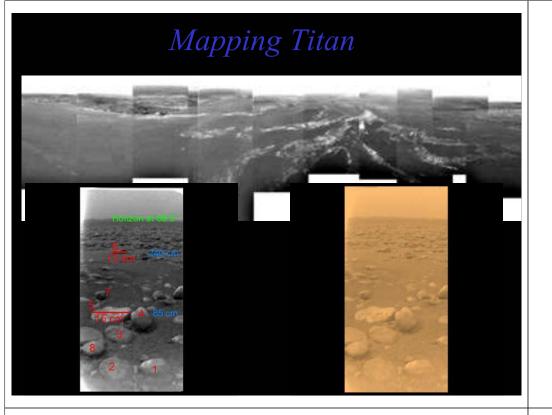

Europa

- Few impact craters indicate recent resurfacing.
- Life would have to be below the surface, around hydrothermal vents.
- Very encouraging, as early life on Earth, might have been formed around such vents.
- We don't how thick the ice is yet.
- To be continued.


Galileo


• Future missions, will have to employ smash and dive spacecraft.

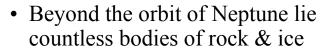



Astronomy 122 Spring 2008 Jan 31, 2008



Saturn's Odd Moons

- Mimas Crater two-thirds its own radius
- Enceladus Fresh ice surface, water volcanoes?
- Hyperion Irregularly shaped
- **Iapetus** Half its surface is 10x darker than the other half
- Phoebe Orbits Saturn backwards



Jan 31, 2008

The Outer Reaches

- Pluto is the largest of these **bodies**
 - Not a rocky planet
 - Not an ice giant

Jan 31, 2008

First Pictures of Pluto/Charon

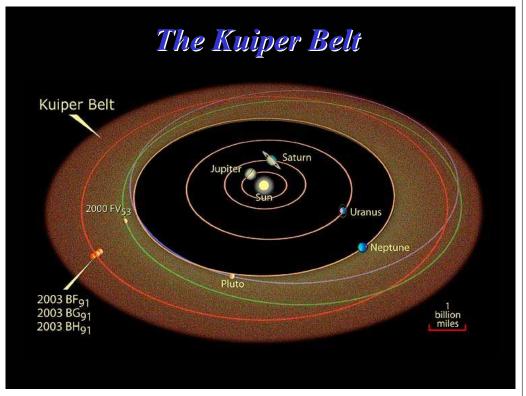
- 1995 Hubble Space Telescope infrared
- 1996 Hubble Space Telescope visible

Astronomy 122 Spring 2008 Astronomy 122 Spring 2008 Jan 31, 2008

Do we know of all of the Bodies in our Solar System?

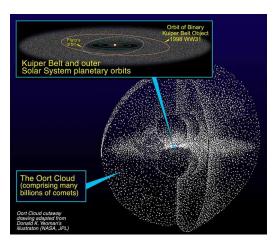
Ì

- a) Yes.
- b) No.


Jan 31, 2008

Astronomy 122 Spring 2008

Do we know of all of the Bodies in our Solar System?

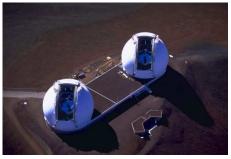

• No. Even at in the 21st century, we are still discovering new comets, or large asteroids, or even large planet-like objects?

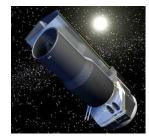
Oort Cloud

Ì

- Billions of icy minor planets – comet nuclei
- Roughly spherical out to 50,000 AU
- Predicted by Jan Oort
- Explains long-period comets
- No observations to date.

http://www.solarviews.com/browse/comet/kuiper3.jpg


Jan 31, 2008

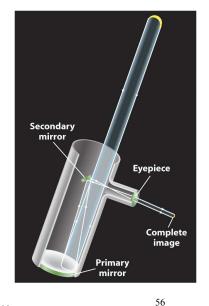

Astronomy 122 Spring 2008

We need telescopes to observe Starlight

Jan 31, 2008

Astronomy 122 Spring 2008

Telescopes & Astronomy


- The single most important tool to astronomers is the telescope
 - They collect more light than the eye
 - Allow us to see heavenly objects more clearly and to greater distances
- Astronomers have been using telescopes for about 400 years to explore the Universe
- Need telescopes which work at all wavelengths

Functions of a Telescope

- Telescope functions
 - Collect light over a large area
 - Resolve image onto an eyepiece or a scientific instrument
- Extract maximum possible information
 - Form image or take spectrum
- Can do this with either lenses (refracting) or mirrors (reflecting)
- Three priorities (in order)
 - Gathering light
 - Angular resolution
 - Magnification

Jan 31, 2008 Astronomy 122 Spring 2008 55
Jan 31, 2008 Astronomy 122 Spring 2008