Astronomy 122 TR 1300-1350

112 Chemistry Annex

Leslie Looney Phone: 244-3615

Email: lwl @ uiuc . edu Office: Astro Building #218

Office Hours:

W 11:00 a.m - noon or by appointment

Homework #1 due Sunday night:

2 parts: MC and short

This Class (Lecture 3):

The Glorious Dance

Next Class:

Brief overview of our Solar System

Music: Space Oddity - David Bowie

Astronomy 122 Spring 2008 Jan 22, 2008

Jan 22, 2008

Astronomy 122 Spring 2008

Outline

• Motions of the Sky

Seasons

The Data

- Look up at the night sky.
- What are the **Data**?
 - Where does the day, the month, and the year come from?
 - What are the motions of the Earth, Moon, and

Question

- Living on the Earth, we experience three different astronomical time-scales that we have whole heartedly adopted.
- Try to explain/talk about the
 - Daily motion of the sky
 - Monthly motion of the sky
 - Yearly motion of the sky

And iClicker

And iClicker

The daily motions, e.g. rising and setting of the Sun, are caused by

- a) The Sky orbiting the Earth.
- b) The Sun orbiting the Earth.
- c) The Earth orbiting the Sun.
- d) The Earth rotating.
- e) The Sky rotating.

Jan 22, 2008

Astronomy 122 Spring 2008

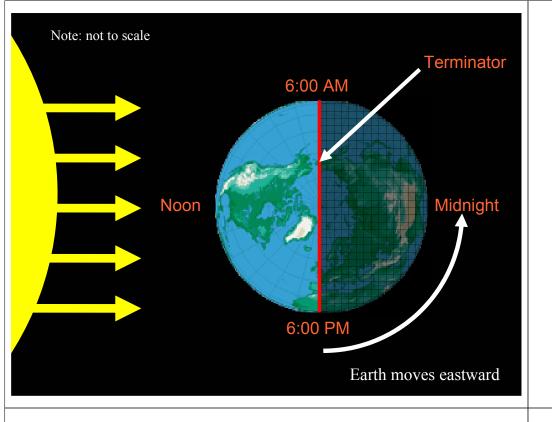
The monthly motions, e.g. the phases of the Moon, are caused by

- a) The Moon orbiting the Earth.
- b) The Sun orbiting the Earth.
- c) The Earth orbiting the Sun.
- d) The Earth rotating.
- e) The Sky rotating.

Jan 22, 2008

Astronomy 122 Spring 2008

And iClicker


The yearly motions, e.g. different constellations in the night sky, are caused by

- a) The Sky orbiting the Earth.
- b) The Sun orbiting the Earth.
- c) The Earth orbiting the Sun.
- d) The Earth rotating.
- e) The Sky rotating.

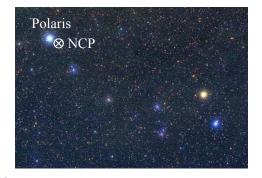
A Day

- What causes a day to be 24 hours?
- The Earth is rotating around its axis.

Point of View

- So the Earth is rotating, and that gives the illusion that the Sun rises and sets.
 - This is not obvious.
- Also the Earth's rotation makes the stars, Moon, and planets seem to rise and set each night.
- Are there any objects that do not seem to rise and set?

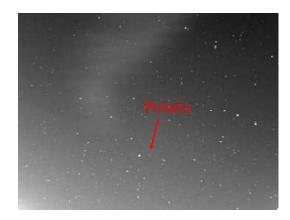
Jan 22, 2008


Jan 22, 2008

Astronomy 122 Spring 2008

Polaris, the Pole Star, the North Star

- Polaris does not rise or set.
- If you stood on the North Pole and looked straight up (also called the North Celestial Pole), you would see Polaris.
- If you find Polaris, you know North.
- Is it the brightest star in the Sky?



NO!

Question

If we took a time-lapse photo of the starry night sky toward Polaris, what would it look like? Hint: The Earth is rotating (eastward).

Astronomy 122 Spring 2008

Daily Paths

- Earth's rotation creates daily (dirunal) motion of the stars, Sun, Moon, & planets
- Earth spins eastward, so stars appear to move westward – daily paths

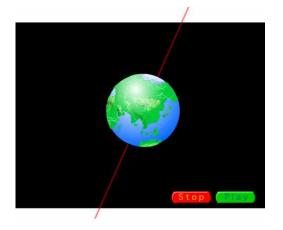
Astronomy 122 Spring 2008 Jan 22, 2008

Jan 22, 2008

Astronomy 122 Spring 2008

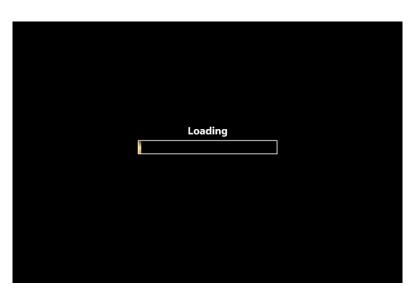
Your View of the Sky

- **Zenith** point directly overhead
- **Horizon** marks the intersection of Earth and sky
- **Meridian** from North to South through the zenith



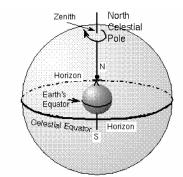
Celestial Poles and Equator

Astronomy 122 Spring 2008


- Celestial poles extensions of the Earth's axis onto the celestial sphere
- Celestial equator project the Earth's equator onto the celestial sphere

Astronomy 122 Spring 2008 Jan 22, 2008 Jan 22, 2008

Stars motion depend on your Latitude!


Jan 22, 2008

Astronomy 122 Spring 2008

Changes with Latitude

- The positions of the celestial poles and celestial equator on the sky depend on your latitude (GPS anyone?)
- Note: The celestial equator always crosses the horizon at due east and due west

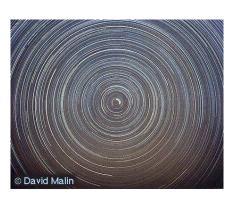
Latitude = 90° N (at North Pole) altitude of NCP = 90°

Jan 22, 2008

Astronomy 122 Spring 2008

At the North Pole

- Polaris is directly overhead
- The sky appears to spin around it
- Stars don't rise or set (circumpolar), they just go around

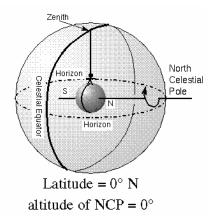

• All stars are circumpolar at the pole!

Circumpolar Stars

- The sky appears to spin around Polaris.
- Earth's rotation is counter clockwise, if you were to look down on the North Pole
- Most stars' daily paths rise in the east and set in the west
- But, some are so close to Polaris, they can't reach the horizon!
- Called *circumpolar stars*

Jan 22, 2008

Jan 22, 2008 Astronomy 122 Spring 2008


Changes with Latitude

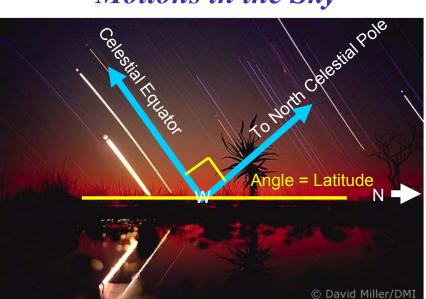
At the Equator

- The positions of the celestial poles and celestial equator on the sky depend on your latitude (GPS anyone?)
- Note: The celestial equator always crosses the horizon at due east and due west

• Polaris is right on the horizon

 Stars rise straight up from the eastern horizon and set straight down on the western horizon

• No stars are circumpolar at the equator!


Jan 22, 2008

Astronomy 122 Spring 2008

Jan 22, 2008

Astronomy 122 Spring 2008

Motions in the Sky

Question

You observe a star rising directly to the East from Urbana. When this star reaches its highest position above the horizon, where will it be?

- a) High in the northern sky
- b) High in the eastern sky
- c) High in the southern sky
- d) High in the western sky
- e) Directly overhead

 Jan 22, 2008
 Astronomy 122 Spring 2008

 Jan 22, 2008
 Jan 22, 2008

Astronomy 122 Spring 2008

South of the Equator

- South of the equator, you can't see Polaris
- You do see the South Celestial Pole
- But nothing is there.

http://antwrp.gsfc.nasa.gov/apod/ap040911.html

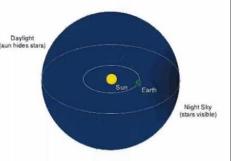
Astronomy 122 Spring 2008 Jan 22, 2008

Earth's Orbit

• The Earth's rotation explains the motions of the stars over a day, but why does the sky

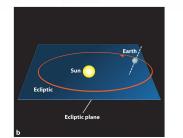
change over many nights? (i.e. Why can you see Orion only from Dec-March?)

Jan 22, 2008


Jan 22, 2008

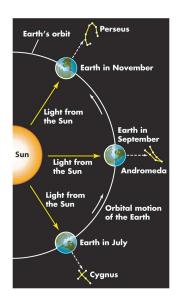
Astronomy 122 Spring 2008

Free Trip Around the Sun

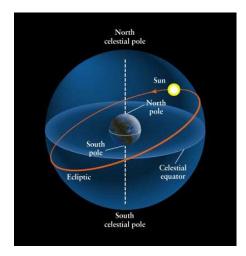


- The Earth orbits the Sun every Daylight (Sun hides stars) 365 days
- The plane of the Earth's orbit is called the **ecliptic**

"Living on Earth may be expensive, but it includes an annual free trip around the sun."


-Asleigh Brilliant

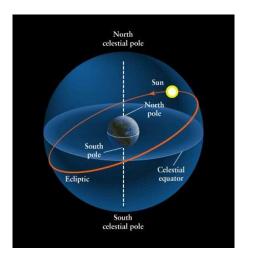
Orbiting for Fun



- The Earth moves around the Sun.
- And the stars are far away.
- This makes the stars appear to move slightly every day.
- A star will rise about 4 mins early every day or about 2 hours earlier every month.

The Ecliptic on the Celestial Sphere

- Similarly, from our point of view, the Sun moves a little each day with respect to the stars.
- This path (the ecliptic) can also be drawn on the celestial sphere
- Note, the ecliptic and the celestial equator are not the same circles
- What would cause that?



Astronomy 122 Spring 2008 Jan 22, 2008

The Ecliptic on the Celestial **Sphere**

- You're tilted.
- You're whole freakin' world is tilted.
- The Earth's axis is tilted to the ecliptic plane by 23.5°

Jan 22, 2008

Astronomy 122 Spring 2008

The Sun Moves in the Sky

http://planck.phys.uwosh.edu/mike/exercises/ anim/ecliptic movie.mov

