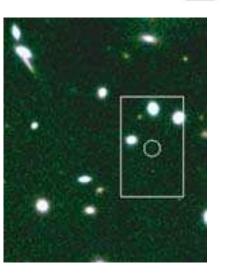
Astronomy 122

Final Exam

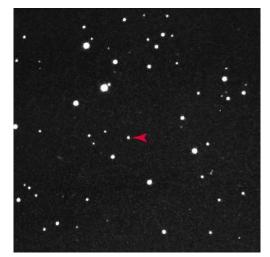


	<u>This Class (Lecture 25):</u> Active Galaxies & Quasars <u>Next Class:</u> The Big Bang	 In this classroom, May 6th from 1:30-4:30pm Multiple choice. Can bring a sheet of notes Will be cumulative (80% new material) If 60 questions, 48 from the new and 12 from the old. The old parts should be relevant to new discussions. 	
	HW10 due on Sunday		
M Apr 17, 2008	Iusic: Space Oddity – David Bowie Astronomy 122 Spring 2008	Apr 17, 2008 Astronomy 122 Spring 2008	
	Final Exam	Outline	Ì
How many q minutes?	uestions should we have for the 180	 The monster inside of quasars Little Black Holes 	
a) 50			
b) 60			
c) 70			
d) 80			
e) 90			

Apr 17, 2008

The Furthest Known Galaxy

- Although under some debate, this galaxy is thought to be at z=10!
- 13,230 million light-years away
- That means only 470 Myrs after the Big Bang!
- If the Universe had the lifetime of a human (say 80 years), this is like a galaxy fro when the Universe was only 2 years old!



http://www.universetoday.com/2004/03/01/record-for-furthest-galaxy-is-broken-again/

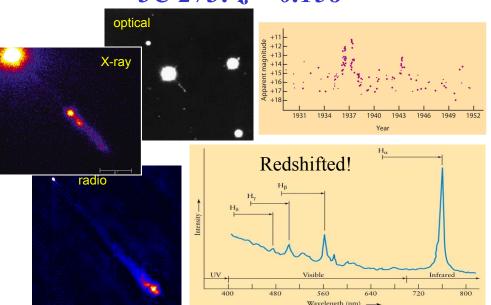
A Very Strange Star !?!

- Looked like a blue star, but had very odd spectrum lines
- Turned out it was simply greatly redshifted $\Rightarrow z = 0.16$
- That's 2 billion light years away!
- It must be 100 times brighter than the entire Milky Way!
- Not a star

Apr 17, 2008

Astronomy 122 Spring 2008

Quasars...

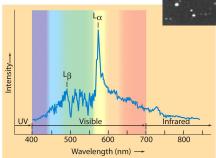


- These objects have a spectrum much like a dim star
 - But highly redshifted
 - Appear to moving away from us very fast!
- Dubbed quasars (quasi-stellar radio sources)
- Hubble's Law tells us that they are at "astronomical" distances
 - Up to 13 billion light years away!
- Great distances must be very bright
 - Some 1 million times the brightness of our Galaxy!
- Highly variable
 - Emission region must be small about the size of our Solar System

Apr 17, 2008

Astronomy 122 Spring 2008

The First Quasar Discovered: 3C 273: z = 0.158

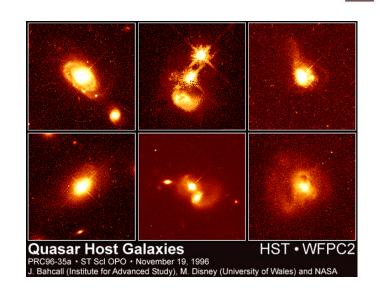


Apr 17, 2008

Astronomy 122 Spring 2008

PKS 2000-330

- Redshifted so much that UV emission can be seen in the optical
- This quasar appears to be moving away from us at 92% of the speed of light!

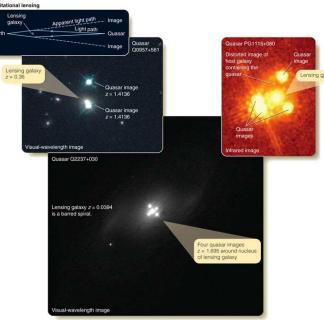


Apr 17, 2008

Astronomy 122 Spring 2008

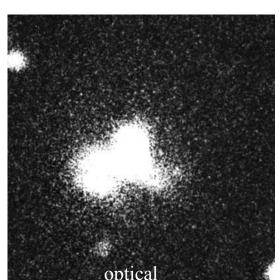
Quasar Host Galaxies

- Quasars live in distant galaxies
- They are galactic nuclei!



Ì

Gravitational Magnified


Ì

So what is a quasar?

- a) The nucleus of a galaxy far away.
- b) A tasty treat.
- c) A star with high velocity.
- d) A quasi-static nebula that is bright in the radio.

Are there quasars in the nearby Universe?

The Cygnus A Galaxy

- Looks like a star
- But bright in the radio
- And it's moving away from us fast!
- Moving away at 14,000 km/s.
- That's about 5% the speed of light!
- 635 million light years away! Or 194 Mpc.
- Similar to a quasar??

Apr 17, 2008

Astronomy 122 Spring 2008

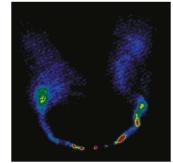
Apr 17, 2008

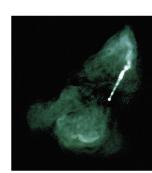
Astronomy 122 Spring 2008

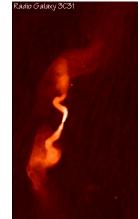
Active Galaxies

- Ì
- There are no quasars in the nearby Universe *now*
- But there are some very energetic galaxies (about 1% of all galaxies)
 - Very bright, star-like nuclei
 - Often, energetic outflows of matter from the nucleus
- Called active galaxies
- Types of active galaxies
 - Seyfert galaxies
 - Blazars
 - Radio galalxies
- Like quasars, but not as energetic

Seyfert Galaxies


- Look like normal spiral galaxies, but with incredibly bright nuclei
- Potentially as bright as a trillion Suns!
- Brightness varies tremendously
- Over a few weeks it's brightness can change by the ENTIRE brightness of the Milky Way

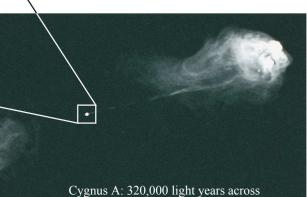



Apr 17, 2008

Radio Galaxies

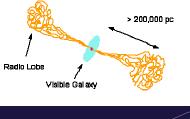
- There are varying types of radio galaxies
- Called *radio loud* as they can be 10 million times as bright as the Milky Way at radio wavelengths

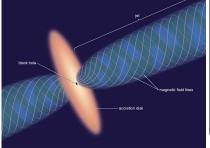
'LA 20cm image (c) NRAO 1996

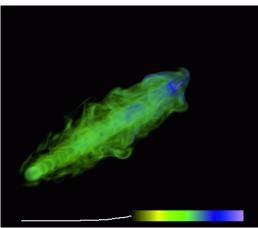

Apr 17, 2008

Astronomy 122 Spring 2008

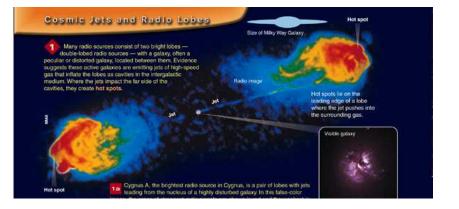
Radio Galaxies




- Galaxies that emit large amounts of radio waves
- Usually Elliptical
- Radio emission come from lobes on either side of the galaxy, not the galaxy itself

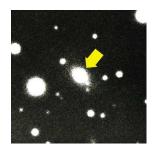


Radio Galaxy Jets



© 2005 Pearson Education, Inc., publishing as Addison Wesle

Apr 17, 2008


Astronomy 122 Spring 2008

Blazars

• Bright nuclei with almost completely featureless spectrum.

Superluminal Motion 992.0 - 0 993.0 - 0 993.0 - 0 994.0 - 0 995.0 - 0 5 milliarcseconds

Apr 17, 2008

Radio Galaxies: Centaurus A

Ast

If you could see the lobes of the jet with your naked eyes, it would be 10 times bigger than a full moon!

Superluminal?

- We can see blobs of gas that appear to be moving faster than light!
- Since the jets are moving so fast 99% the speed of light, we have two effects
 - Light travel time
 - Blob travel time

Apr 17, 2008

Astronomy 122 Spring 2008

© 2007 Thomson Higher Education

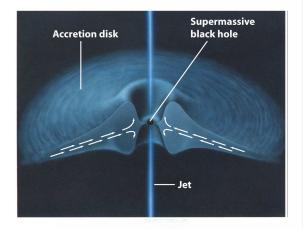
Centaurus A

What is the power source for quasars and other active galaxies?

Apr 17, 2008

Astronomy 122 Spring 2008

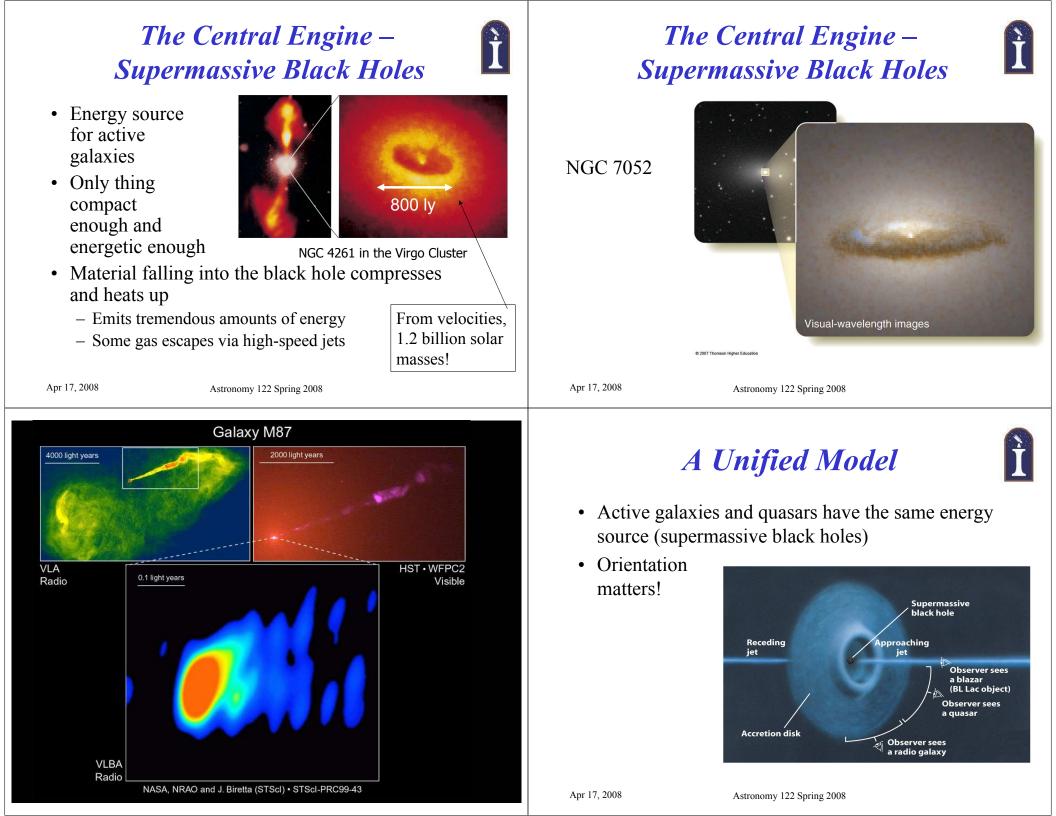
Quasars and Active Galaxies

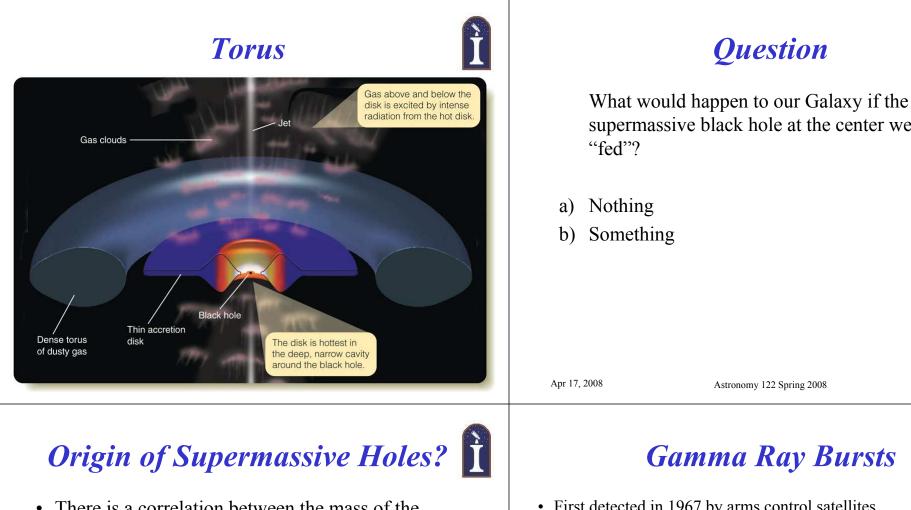

- Supermassive black holes probably exist in most if not all galaxies' cores
- In the past, active galaxies were more common then now
 Peaked at z=2, none past 2.7
- Were very powerful active galaxies at one time quasars?
- As the Universe evolved, the quasars calmed down
 - Turned off?
 - Became today's active galaxies?

Object	Luminosity (watts)
Sun	4×10^{26}
Milky Way Galaxy	1037
Seyfert galaxies	$10^{36} - 10^{38}$
Radio galaxies	$10^{36} - 10^{38}$
Quasars	$10^{38} - 10^{42}$

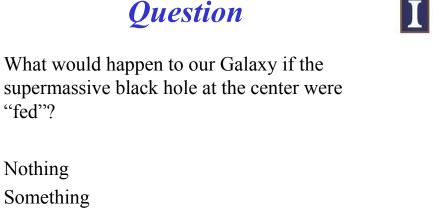
Driving Active Galaxies: The Monster Within

- A scary blue monster?
- Probably not
- Most likely the energy source is a supermassive black hole
- Accretion disk emits tremendous amounts of energy as it falls onto the black hole


Apr 17, 2008

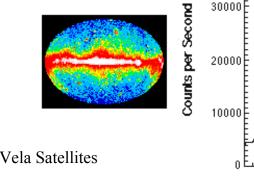

Astronomy 122 Spring 2008

The Central Engine



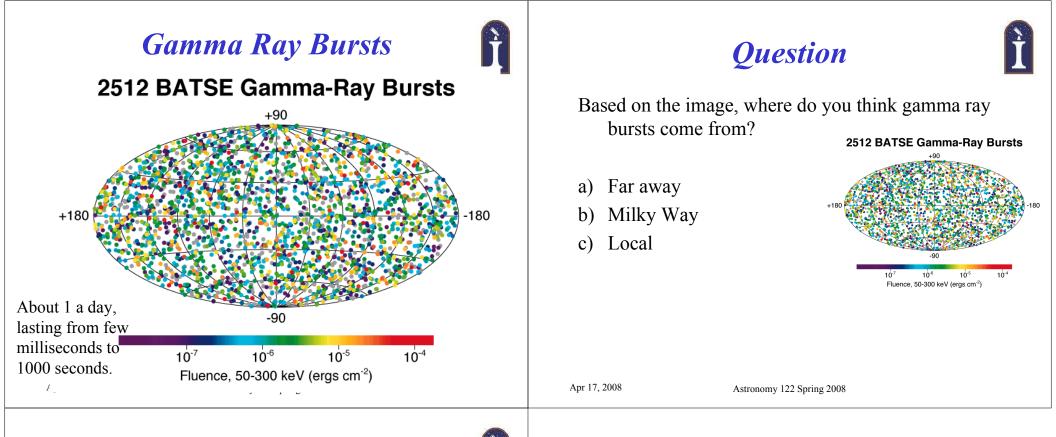
- There is a correlation between the mass of the central black hole and the bulge of the galaxy.
- Not the disk component, only the bulge.
- About 0.5% of the bulge.
- Suggests that the black hole formed earlier in the bulge formation process.

Question


Astronomy 122 Spring 2008

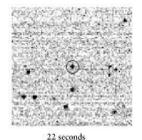
Gamma Ray Bursts

- First detected in 1967 by arms control satellites. First reported in 1973.
- Most powerful explosion in the known Universe!

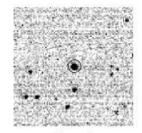


Apr 17, 2008

Astronomy 122 Spring 2008

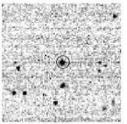

Time in Seconds

10



Gamma Ray Bursts

- Recent observations confirm they are very energetic (as much energy in 100 seconds as the Sun over its entire life!) and very distant (z = 4).
- Energized by either the merging of neutron stars or, more likely, hypernovae (> 40 solar mass star)



Api 17, 2000

48 seconds Astronomy 122 Spring 2008

73 seconds