Astronomy 122

This Class (Lecture 12):•Stellar Evolution: The
Main Sequence•Next Class:
A Star is Born•

HW5 due on Sunday

Midterm in 2 weeks!

Music: We Only Come Out at Night - Smashing Pumpkins

Feb 21, 2008

Astronomy 122 Spring 2008

HW

- Good job 30% looked at HW before discussion class.
- Important to note that after Short HW is graded, your answers and my answers are posted in Compass
- View submission...

Eclipsed

- Did you see it?
- If not, you will need to wait until December 20th, 2010 to see another!

Feb 21, 2008

Astronomy 122 Spring 2008

Midterm in 2 weeks

- All multiple choice questions.
- Approximately 10-25% will include math.
- Can bring a sheet of paper with notes on each side.
- Will try to create a study guide for discussion section.
- Exam will be worth 105 points, but graded out of 100 (extra credit).

Midterm in 2 weeks

How many multiple choice questions would you prefer?

a)	25		
b)	35		
c)	40		
d)	45		
e)	50		

Feb 21, 2008

Astronomy 122 Spring 2008

What Color is Sunlight?

Outline

Feb 21, 2008

Astronomy 122 Spring 2008

Ì

What does the spectra of the Sun look like?

- a) A continuous rainbow of color.
- b) A few discrete colors, which depend upon the gas.
- c) A continuous rainbow of color with some colors reduced in brightness due to the elements in the gas.
- d) A continuous rainbow of color with a few discrete colors brighter than the rest.
- e) We don't know. We can't observe the Sun; its too bright.

http://antwrp.gsfc.nasa.gov/apod/ap000815.html

Feb 21, 2008

How Do the Spectra Lines Form?

To answer this question, we need to delve into the structure of matter itself...

Atoms and Elements

- All matter is made of elements
 - 92 natural and 23+ "artificial"
 - Hydrogen, Carbon, Oxygen, Iron, Uranium, etc.
 - Each element is composed of a different kind of atom
- The number of protons (or Z) in an atom determines the type of element
 - Hydrogen has 1 proton (Z=1), oxygen has 8 protons (Z=8), etc.

Atoms and Elements

- Atoms are mostly empty space.
- Neutrons are mostly "packing material".
- Atoms interact via electrons
 - Shared among atoms to make molecules
 - Atoms missing or with extra electrons are called ions

Astronomy 122 Spring 2008

Atomic Structure

- Electrons orbit the *nucleus* of each atom
- The nucleus consists of protons and neutrons
- Number of protons = number of electrons (total charge=0)
- The electrons can only have special orbits called *energy levels*
- The lowest energy level is the ground state

Periodic Table H. Li Be Ν 0 F Ne С ithiun Na Mg AI Si P S CI Ar 20 32 ĸ Ca Ti Cr Mn Co Ni Cu Zn Ga Ge Se Br Kr Sc V Fe As 49 38 Cd Rb Sr Nb Мо Tc Ru Rh Pd Ag Silver In Sn Tin Sb Те Y Zr 1 Xe 56 Cs Ba La Hf Re Os Pt Hg TI Pb Lead Bi Po At Astatin Rn Та W Ir Au 87 **Fr** 105 **Db** 106 **Sg** 88 107 Bh 108 **Hs** 109 Mt 114 Rf Ra Ac Nd Pr Pm Sm Eu Gd Tb Ce Dy Ho Er Tm Yb 1 m Thulium 100 101 102 97 98 99 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Astronomy 122 Spring 2008 Feb 21, 2008

Question

Ì

- What is an atom mostly made of?
- a) Empty space
- b) Neutrons
- c) Protons
- d) Electrons
- e) Elves

Astronomy 122 Spring 2008

How Do Spectrum Lines Form?

- Spectrum lines correspond to electron transitions between energy levels in an atom
- Absorption: light energy absorbed by atom, electron jumps to a higher energy level
- Emission: electron drops down to lower energy level; releases energy as light

Feb 21, 2008

Astronomy 122 Spring 2008

How Do Spectrum Lines Form?

- Spectral lines correspond to electron transitions between energy levels in an atom
- Excitation: electron jumps to a higher energy level
 - Collision
 - Photon absorption
- Emission: electron drops down to lower energy level; releases energy
 - Collision
 - Spontaneous

a Absorption

```
b Emission
```

How Do Spectrum Lines Form?

Need the right energy to excite = electron level gap

Usually, the atom will de-excite quickly.

Feb 21, 2008

Astronomy 122 Spring 2008

Atom Collisions

• Electrons get knocked-up to higher energy levels by collisions

Feb 21, 2008

Astronomy 122 Spring 2008

Creation of Absorption and Emission Line Spectra

Feb 21, 2008

Astronomy 122 Spring 2008

Stellar Spectra: Classification

You should guess that the spectral features seen in stars are related to the temperature of the star– which elements are excited.

Question

- So why does the spectra of a each element have a unique fingerprint?
- a) It doesn't.
- b) As the nucleus of each element is different, each has different electron levels, which correspond to different colors of light.
- c) As the nucleus of each element is different, when the nucleus decays, which correspond to different colors of light.
- d) Due to its temperature only.
- e) Sponge.

Feb 21, 2008

Astronomy 122 Spring 2008

Classifying Butterfiles

- Early astronomers (1890-1910) did not have your knowledge of stars.
- They tried to classify stars based on the spectra at Harvard.
 - Called the Harvard "computers"
- Most well known was Annie Cannon
 - Classified 250,000 stars by hand!
 - Did groups of A,B,C, etc...
 - Wrong classification order.. but..

Stellar Spectra: Classification

You should guess that the spectral features seen in stars are related to the temperature of the star– which elements are excited.

What do the spectra tell us?

- The spectra tell us about both the compositions and temperatures of the stellar atmospheres
- Astronomer Cecilia Payne found that most stars' compositions are very similar to the Sun's
- The spectral sequence is due to *temperature*, not composition
 - M & K stars are 92% hydrogen, but their photospheres aren't hot enough to excite it

Cecilia Payne

Spectral Classes

• Today, only 9 main classes (with sub-classes) based on spectrum lines

• Our Sun is a "G2" star

"Only Bad Astronomers Forget Generally Known Mnemonics"

Properties of Spectral Classes

table 19-2 The Spectral Sequence

Spectral class	Color	Temperature (K)	Spectral lines	Examples
0	Blue-violet	30,000-50,000	Ionized atoms, especially helium	Naos (ζ Puppis), Mintaka (δ Orionis)
В	Blue-white	11,000-30,000	Neutral helium, some hydrogen	Spica (α Virginis), Rigel (β Orionis)
А	White	7500-11,000	Strong hydrogen, some ionized metals	Sirius (α Canis Majoris), Vega (α Lyrae)
F	Yellow-white	5900-7500	Hydrogen and ionized metals such as calcium and iron	Canopus (α Carinae), Procyon (α Canis Minoris)
G	Yellow	5200-5900	Both neutral and ionized metals, especially ionized calcium	Sun, Capella (α Aurigae)
К	Orange	3900-5200	Neutral metals	Arcturus (α Boötis), Aldebaran (α Tauri)
М	Red-orange	2500-3900	Strong titanium oxide and some neutral calcium	Antares (α Scorpii), Betelgeuse (α Orionis)
L	Red	1300-2500	Neutral potassium, rubidium, and cesium, and metal hydrides	Brown dwarf Teide 1
Т	Red	below 1300	Strong neutral potassium and some water (H_2O)	Brown dwarf Gliese 229B

Brown dwarfs were added later. Very cool and very red – named L and T spectral classes. Brown dwarfs are too small to sustain fusion.

Feb 21, 2008

Dwarfs	T Dwarves Image: Comparison of the constellation for the constel
	The near-infrared view The optical view Image: Composite JHKs Atlas Image Palomar Digitized Sky Survey
Feb 21, 2008 Astronomy 122 Spring 2008 http://spider.ipac.caltech.edu/staff/davy/ARCHIVE	AJ.Burgasser (JAC/Caltech), M.E.Brown (Caltech), LN Reid (U.Penn), J.E.Gizis (U.Mass), C.C.Dahn & D.G.Monet (USNO, Flagstaff), C.A.Beichman (PL), J.L.Gizis (U.Mass), C.C.Dahn & D.G.Monet (USNO, Flagstaff), C.A.Beichman (PL), J.Lebert (Arizona), R.M.Curl (PL/C)Caltech, M.F.Skrutskie (U.Mass) The 2MASS Project is a collaboration between the University of Massachusetts and IPAC Feb 21, 2008 ASU OHOHINY 122 Optimg 2000 http://spider.ipac.caltech.edu/staff/davy/ARCHIVE/
Hot Stars Are Rare	Stellar Properties
Geometry 2128 2572 1618 6254/29 80-20,3465 Val G938 V	 Apparent brightness Luminosity
Rosa 100 Proprior Protection	• Distance
16 Type K Stars 75 Type M Stars 17 Oph 18 Type L Brown Dwarf 17 Oph 18 Type L Brown Dwarfs 17 Oph 18 Type L Brown Dwarfs 17 Oph 18 Type L Brown Dwarfs 17 Oph 18 Type L Brown Dwarfs 10 White Dwarfs 10 White Dwarfs	ColorStellar spectra

http://www.anzwers.org

The Mosquito Dilemma

- It's like a mosquito trying to understand humans.
- They don't live long enough to watch humans be born and die, so they have to extrapolate.
- How do we understand stars that live for 10 billion+ years?

L and T

- We have the luminosity and temperature of stars.
- How do they correlate?
- Think about it.
- If we can have any L for any T, what do we expect?
- If only one L for one T, then what?

Feb 21, 2008

Astronomy 122 Spring 2008 hews.uns.purdue.edu/html3month/2004/040823.Williams.fallwnv.html

The H-R Diagram

- In the early 20th century, two astronomers plotted luminosity vs. temperature and found an interesting correlation in different regimes.
- It is not a random plot of points!
- The resulting plot is now named for them
- The Hertzsprung-Russell Diagram

Astronomy 122 Spring 2008

Feb 21, 2008

http://www.kosmologika.net/Stars/HR-fordelning av samplade stjarnor.gif

- Notice the large number of stars on the main sequence.
- The Sun is very average.

The H-R Diagram

How does the size of a star near the top left of the H-R diagram compare with a star of the same brightness near the top right of the H-R diagram?

In Hawaii

Temperature and Surface Area

22 Spring 2008

Which is hotter?

Feb 21, 2008

Astronomy 122 Spring 2008

Feb 21, 2008

Astronomy 122 Spring 2008

Luminosity and Size

 $L = 4\pi R^2 \sigma T^4$

- A star's intrinsic brightness (luminosity) depends on its temperature and its size.
- A small hot star can be less bright than a huge cool star.

- Bright cool stars must be large
 - Giants & Supergiants
- Dim hot stars must be small
 - White dwarfs

