

Astronomy 122

Make sure to pick up a grating from Emily!

You need to give them back after class.

This Class (Lecture 11):

Twinkle, Twinkle, Little Star

Next Class:

Stellar Evolution:
The Main Sequence

Music: *Starlight* – Muse

Astronomy 122 Spring 2008

Feb 19, 2008

Feb 19, 2008

Astronomy 122 Spring 2008

HW

Feb 19, 2008

- Keep it up this week...
- Don't make me sad....

Lunar Eclipse

- Lunar Eclipse on Wednesday night!
- Shadow of Earth on Full Moon.
 - Enter the penumbra at 1840
 - Enter the umbra at 1943
 - Enter totality at 2100
 - Exit totality at 2150
 - Exit umbra 2309

Feb 19, 2008

- Exit penumbra at 0016

http://spacsun.rice.edu/~has/images/RB_Lunar-Eclipse-Phases-Center_10_29.jpg

Night Observing

Ì

- Night observing started!
 - Feb 20th: Wednesday (special Lunar Eclipse!)
 - Feb 25-28th: Monday-Thursday
- Don't wait until last minute (never know about Illinois weather)!
- Observing sessions are from 7:30pm-9:30pm (allow 45 mins to complete)

Feb 19, 2008

Astronomy 122 Spring 2008

Outline

Feb 19, 2008

Astronomy 122 Spring 2008

The Spectrum of Blackbody Radiation

- For higher temperature the maximum occurs at shorter wavelengths.
- For lower temperatures the maximum occurs at longer wavelengths.

Stellar Colors

- Higher temperature → brighter, bluer
- Lower temperature → dimmer, redder

Color me..

White hot Sirius to a red supergiant Betelgeuse

Feb 19, 2008

Astronomy 122 Spring 2008

Which is Brighter?

- Moon
- Streetlamp
- Why?
- Apparent brightness and luminosity difference.

Feb 19, 2008

Astronomy 122 Spring 2008

Which is Brighter?

- Apparent brightness (flux) will depend on distance, but...
- Luminosity measures how much energy object emits per second, which is independent on distance.

Why do more distant objects look so much fainter?

- More distant stars of a given luminosity appear dimmer
- Apparent brightness drops as square of distance

Feb 19, 2008

Same number of Photons, but more area.

Feb 19, 2008

Astronomy 122 Spring 2008

Luminosity

- Apparent brightness ≠ luminosity!
- Apparent brightness depends on distance away.

$$b = \frac{L}{4\pi d^2}$$

- The farther, the dimmer.
- That's why it's called apparent brightness.

Feb 19, 2008

Astronomy 122 Spring 2008

Apparent Brightness

If you visited Pluto how would the apparent brightness of the Sun change? Pluto is 40 times farther away than Earth.

- a) 1600 times brighter
- b) 1600 times dimmer
- c) 40 times brighter
- d) 40 times dimmer
- e) The same

Measuring Star Brightness

In 130 BC, a Greek astronomer, Hipparchus, classified all the stars visible to the naked eye into 6 **magnitudes**

- 1st magnitude the brightest stars visible
- 21 "1st magnitude stars"
- 6th magnitude the dimmest stars visible
- For magnitudes, a smaller number is brighter (sorry about that), or more negative.
- There are more dimmer stars than bright stars

Apparent Magnitude Scale

Apparent magnitudes

The human eye sees in a sort of logarithmic (powers) way. Each magnitude is 2.512 times brighter.

Note: apparent magnitude is really flux (intensity) as it is related to luminosity and distance

Feb 19, 2008

Astronomy 122 Spring 2008

Apparent Magnitudes

$$F_A / F_B = 2.512^{(m_B - m_A)}$$

- Vega is nearly zero magnitude
- A star that is 5 magnitudes **bigger** than Vega, would be 100 times **less** bright
- Each magnitude is 2.512 times brighter than the next magnitude **down**
 - $-2.512 \times 2.512 \times 2.512 \times 2.512 \times 2.512 = 100$

Feb 19, 2008

Astronomy 122 Spring 2008

Apparent Magnitude Scale

Apparent magnitudes -30 10 20 -10 30 -20 Sun Full Moon Sirius Betelgeuse Polaris Naked eve Pluto Hubble Space -26.7-12.6at brightest -1.46 1.99 limit Telescope limit 30.0 6.0

How much dimmer is Sirius, compared to the Sun?

$$F_{Sirius} / F_{Sun} = 2.512^{(m_{Sun} - m_{Sirius})}$$

Apparent Magnitude Scale

Apparent magnitudes

How much dimmer is Sirius, compared to the Sun?

$$F_{Sirius} / F_{Sun} = 2.512^{(m_{Sun} - m_{Sirius})}$$

$$m_{Sun} = -26.7$$
 and $m_{Sirius} = -1.46$

$$\Rightarrow$$
 m_{Sun} $-m_{Sirius} = -25.24$

Apparent Magnitude Scale

Apparent magnitudes

How much dimmer is Sirius, compared to the Sun?

$$F_{Sirius} / F_{Sun} = 2.512^{(m_{Sun} - m_{Sirius})}$$

$$\Rightarrow \frac{F_{Sirius}}{F_{Sun}} = 2.512^{-25.24} = 8 \times 10^{-11}$$

Feb 19, 2008

Astronomy 122 Spring 2008

Absolute Magnitudes

- But apparent magnitudes are not very useful.
- To compare star brightness independently of distance, astronomers use **absolute magnitudes**
 - Equal to what the apparent magnitude would be if the star were 10 parsecs away
- This relates Luminosity!
- Then, we can say which star is really brighter.

Feb 19, 2008

Astronomy 122 Spring 2008

Absolute Magnitudes

- To compare star brightness independently of distance, astronomers use absolute magnitudes (M)
 - Equal to what the apparent magnitude (m) would be if the star were 10 parsecs away

Absolute Magnitudes

- An example
 - The star Vega has an apparent magnitude of m=0.03
 - It is 7.5 parsecs away
 - Its absolute magnitude is therefore 0.65

$$m - M = -5 + 5\log(d)$$

Feb 19, 2008

Astronomy 122 Spring 2008

Feb 19, 2008

Absolute Magnitudes

Absolute Magnitudes

- An example
 - The star Vega has an apparent magnitude of m=0.03
 - It is 7.5 parsecs away
 - Its absolute magnitude is therefore 0.65

$$m - M = -5 + 5\log(d)$$

$$M = m + 5 - 5\log(d)$$

Feb 19, 2008

Astronomy 122 Spring 2008

- An example
 - The star Vega has an apparent magnitude of m=0.03
 - It is 7.5 parsecs away
 - Its absolute magnitude is therefore 0.65

$$m - M = -5 + 5\log(d)$$

$$M = m + 5 - 5\log(d)$$

$$M = 0.03 + 5 - 5\log(7.5)$$

$$M = 0.65$$

Feb 19, 2008

Astronomy 122 Spring 2008

Absolute Magnitude

If you visited Pluto how would the absolute magnitude of the Sun change? Pluto is 40 times farther away than Earth.

- a) 1600 times brighter
- b) 1600 times dimmer
- c) 40 times brighter
- d) 40 times dimmer
- e) The same

The Sun's Color

Very close to a black body, but with some features.

What Color is Sunlight?

http://antwrp.gsfc.nasa.gov/apod/ap000815.html

Feb 19, 2008

Astronomy 122 Spring 2008

Spectrum Lines

- When astronomers looked at the spectra of the Sun and stars, they saw **gaps**
- Not a perfect blackbody spectrum!
- Called *dark* spectrum lines

Feb 19, 2008

Astronomy 122 Spring 2008

In the Laboratory

• Bright spectrum lines were produced and studied in the laboratory in the mid-1800s

• Discovered that burning different chemical elements produced different patterns of lines

Spectrum Lines = Fingerprints

The pattern of spectrum lines produced by a gas depends on its chemical composition

http://www.astro.washington.edu/astro101

Feb 19, 2008

Question

Kirchoff's Laws

What is the mystery element?

- a) Hydrogen
- b) Neon
- c) Helium
- d) Nitrogen
- e) Blackbody

Feb 19, 2008 Astronomy 122 Spring 2008

 Law 1: A hot opaque body, such as a blackbody or a hot dense gas, produces a continuous spectrum— a rainbow of colors.

- Law 2: A hot transparent gas will produces emission line spectrum— a series of bright spectral lines with a dark background.
- Law 3: A cool, transparent gas in front of a blackbody, produces an absorption line spectrum—it removes the light at the same colors as the gas would emit if it was hot (from Law #2)

Feb 19, 2008

Astronomy 122 Spring 2008

Kirchoff's Laws

Kirchoff's Laws

Feb 19, 2008

Astronomy 122 Spring 2008

Feb 19, 2008

Kirchoff's Laws

- Ì
- Law 1: A hot opaque body, such as a blackbody or a hot dense gas, produces a continuous spectrum— a rainbow of colors.
- Law 2: A hot transparent gas will produces emission line spectrum— a series of bright spectral lines with a dark background.
- Law 3: A cool, transparent gas in front of a blackbody, produces an absorption line spectrum—it removes the light at the same colors as the gas would emit if it was hot (Law #2)

Feb 19, 2008

Astronomy 122 Spring 2008

Solar Composition

Ì

- From the spectra lines, we can determine the Sun's composition
 - 92% Hydrogen
 - 8% Helium
 - Less than 0.1%other stuff

Solar Spectrum Lines

- The Sun shows dark spectrum lines
- Upper part of the photosphere is cooler than the lower part
- Cooler gas around a continuous spectrum source

• Therefore, we get an absorption spectrum!

Feb 19, 2008