Astronomy 122 Section 1– TR 1300-1350

1320 Digital Computer Laboratory

Leslie Looney This Class (Lecture 3):

Phone: 244-3615
Email: lwl @ uiuc . edu

The Glorious Dance

Office: Astro Building #218

Office Hours:

T 10:30-11:30 a.m. or by appointment

The Earth-Moon System

Next Class:

Homework #1 due Fri!

http://eeyore.astro.uiuc.edu/~lwl/classes/astro122/spring06/

Music: Space Oddity - David Bowie

Jan 24, 2005

Astronomy 122 Spring 2006

Outline

Jan 24, 2005

Astronomy 122 Spring 2006

The Earth is Rotating

Question

If we took a time-lapse photo of the starry night sky toward Polaris, what would it look like? Hint: The Earth is rotating (eastward).

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

Daily Paths

- Earth's rotation creates daily (dirunal) motion of the stars, Sun, Moon, & planets
- Earth spins eastward, so stars appear to move westward daily paths

Jan 24, 2005

Astronomy 122 Spring 2006

Your View of the Sky

- **Zenith** point directly overhead
- Horizon marks the intersection of Earth and sky

West North Seet Horizon Seet See

• Meridian – from

North to South through the zenith

Jan 24, 2005

Astronomy 122 Spring 2006

The Celestial Sphere

Imagine the Sun, Moon, & stars glued on a transparent globe around the Earth

Astronomy 122 Spring 2006

Seasonal Motion

- As the Earth orbits the Sun, the stars visible at night change— The constellations are different in every season.
- A star crosses the meridian one hour earlier every two weeks.

Astronomy 122 Spring 2006

Jan 24, 2005

Jan 24, 2005

Celestial Poles and Equator

- Celestial poles extensions of the Earth's axis onto the celestial sphere
- Celestial equator project the Earth's equator onto the celestial sphere

Jan 24, 2005

Astronomy 122 Spring 2006

Celestial Coordinates

- Measuring North-South
 - **Earth:** Latitude, measures from the equator
 - **Sky:** Declination, measures from the celestial equator
- Measuring East-West
 - **Earth:** Longitude, measured from Greenwich, England
 - **Sky:** Right Ascension, measured from the Vernal Equinox (position of the Sun on first day of Spring)

Jan 24, 2005

Astronomy 122 Spring 2006

How do the Stars Move?

• Compare the motion of the stars at the North Pole, the Equator, and Urbana.

Stars motion depend on your Latitude!

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

Changes with Latitude

- The positions of the celestial poles and celestial equator on the sky depend on your latitude (GPS anyone?)
- Note: The celestial equator always crosses the horizon at due east and due west

Latitude = 90° N (at North Pole) altitude of NCP = 90°

Jan 24, 2005

Astronomy 122 Spring 2006

At the North Pole

- Polaris is directly overhead
- The sky appears to spin around it
- Stars don't rise or set (circumpolar), they just go around

• All stars are circumpolar at the pole!

Jan 24, 2005

Astronomy 122 Spring 2006

Circumpolar Stars

- The sky appears to spin around Polaris.
- Earth's rotation is counter clockwise, if you were to look down on the North Pole
- Most stars' daily paths rise in the east and set in the west
- But, some are so close to Polaris, they can't reach the horizon!
- Called circumpolar stars

Jan 24, 2005

Changes with Latitude

Astronomy 122 Spring 2006

- The positions of the celestial poles and celestial equator on the sky depend on your latitude (GPS anyone?)
- Note: The celestial equator always crosses the horizon at due east and due west

Astronomy 122 Spring 2006

Jan 24, 2005

At the Equator

- Polaris is right on the horizon
- Stars rise straight up from the eastern horizon and set straight down on the western horizon

• No stars are circumpolar at the equator!

Jan 24, 2005

Astronomy 122 Spring 2006

Question

You observe a star rising directly to the East from Urbana. When this star reaches its highest position above the horizon, where will it be?

- a) High in the northern sky
- b) High in the eastern sky
- c) High in the southern sky
- d) High in the western sky
- e) Directly overhead

Motions in the Sky

Jan 24, 2005

Astronomy 122 Spring 2006

South of the Equator

- South of the equator, you can't see Polaris
- You do see the South Celestial Pole
- But nothing is there.

http://antwrp.gsfc.nasa.gov/apod/ap040911.html

Astronomy 122 Spring 2006

Earth's Orbit

• The Earth's rotation explains the motions of the stars over a day, but why does the sky

change over many nights? (i.e. Why can you see Orion only from Dec-March?)

Betelgeuse Bellatrix Mintaka "Great Nebula"

Astronomy 122 Spring 2006

Free Trip Around the Sun

- The Earth orbits the Sun every 365 days
- The plane of the Earth's orbit is called the **ecliptic**

"Living on Earth may be expensive, but it includes an annual free trip around the sun."

-Asleigh Brilliant

Astronomy 122 Spring 2006

Jan 24, 2005

Orbiting for Fun

- The Earth moves around the Sun.
- And the stars are far away.
- This makes the stars appear to move slightly every day.
- A star will rise about 4 mins early every day or about 2 hours earlier every month (24 hours/12 months).

The Gregorian Calendar

- Actually, the revolution period is 365.2422... days long
- A regular calendar year is 365 days long
- Accounting for difference
 - Leap years: 1 extra day every 4 years = 365.25 days
 - No leap yearsevery 100 years = 365.24 days
 - Add leap yearevery 400 years = 365.2425 days

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

Jan 24, 2005

The Ecliptic on the Celestial Sphere

- Similarly, from our point of view, the Sun moves a little each day with respect to the stars.
- This path (the ecliptic) can also be drawn on the celestial sphere
- Note, the ecliptic and the celestial equator are not the same circles
- What would cause that?

Jan 24, 2005

Astronomy 122 Spring 2006

The Ecliptic on the Celestial Sphere

- You're tilted.
- You're whole freakin' world is tilted.
- The Earth's axis is tilted to the ecliptic plane by 23.5°

Jan 24, 2005

Astronomy 122 Spring 2006

Building A Celestial Sphere

- NCP is up from horizon at an angle equal to your latitude
- Equator is 90° from NCP
- Ecliptic is 23.5° tilted from equator

Astronomy 122 Spring 2006

The Sun Moves in the Sky

http://planck.phys.uwosh.edu/mike/exercises/anim/ecliptic movie.mov

Astronomy 122 Spring 2006

What Causes the Seasons?

The Earth is closer to the Sun in the summer?

No!

- While the Earth's orbit is not perfectly circular, it is actually closest to the Sun in *January*
- Also, summer in Northern Hemisphere is winter in Southern and vice versa

Jan 24, 2005

Astronomy 122 Spring 2006

What Causes the Seasons?

Ì

So what does cause the seasons?

- It's the tilt of the Earth's spin axis
 - · Affects the length of day and intensity of sunlight

Sun's Daily Paths

- In the summer, the Sun is north of the celestial equator
 - Long days
 - High in the sky
 - Direct sunlight
- In the winter, it is south of the celestial equator
 - Short days
 - Low in the sky
 - Indirect sunlight

Summer vs. Winter

Astronomy 122 Spring 2006

Jan 24, 2005

Jan 24, 2005

Seasons Around the World

Jan 24, 2005

Jan 24, 2005

Solstices and Equinoxes

- Solstices
 - Most northern and southern points on the ecliptic
 - Longest and shortest amounts of daylight
- Equinoxes
 - When the ecliptic crosses the celestial equator
 - Daytime and nighttime equal

Astronomy 122 Spring 2006

Jan 24, 2005

Seasons Animation

Astronomy 122 Spring 2006

Solstices and Equinoxes

- Winter Solstice December 21
 - 9 hours of daylight, 15 hours of night
- Spring ("Vernal") Equinox March 21
 - 12 hours of daylight, 12 hours of night
- Summer Solstice June 21
 - 15 hours of daylight, 9 hours of night
- Fall ("Autumnal") Equinox Sept 21
 - 12 hours of daylight, 12 hours of night

Jan 24, 2005 Astronomy 122 Spring 2006

The Tropics

- Over the year, the Sun varies from 23.5° north to 23.5° south of the celestial equator
 - If you live between 23.5° N and 23.5° S latitude, the Sun can reach the zenith – directly overhead
 - Sun never gets directly overhead in Urbana, 40° N
- Between 23.5° N and 23.5° S latitude is called the tropics
 - 23.5° N Tropic of Cancer
 - 23.5° S Tropic of Capricorn

Astronomy 122 Spring 2006

Jan 24, 2005

Tropics and Arctics

The Arctic and Antarctic

- Above 66.5° N and below 66.5° S latitudes (90 - 23.5 = 66.5), the Sun can be circumpolar!
- North of 66.5° N
 - The Arctic
- South of 66.5° S
 - The Antarctic

Astronomy 122 Spring 2006

Jan 24, 2005

Jan 24, 2005

Astronomy 122 Spring 2006