Astronomy 122

Outline

HW8 due on Friday.

This Class (Lecture 20):

Black Holes

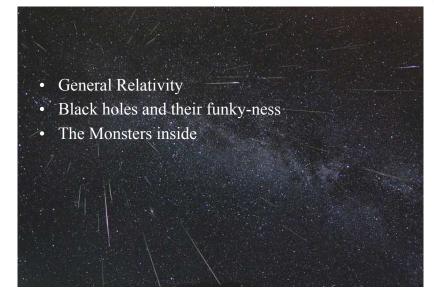
Mar Lecture report due in discussion class tomorrow.

Nightlab report due in discussion

class on April 12th.

Next Class: Nightlab makeup assignment

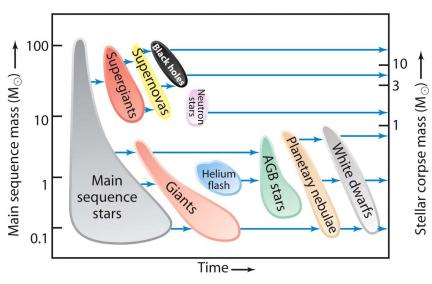
The Milkyway available online (see assignments),


also due on April 12th.

Music: Rocket Man – Elton John

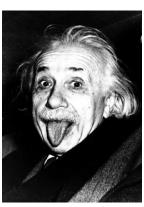
Apr 4, 2005

Apr 4, 2005

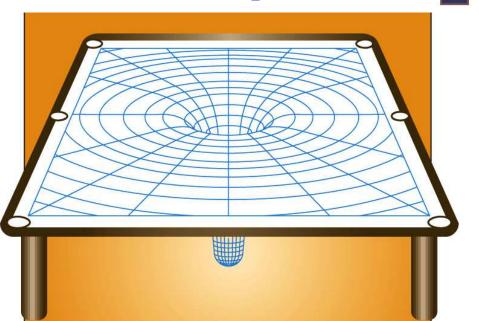

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

Stellar Evolution Recap

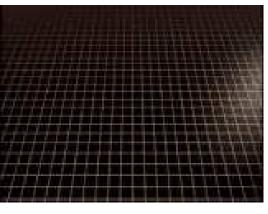

The Theory of General Relativity

• Einstein's Theory of Relativity tells us how gravity works

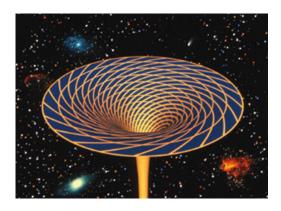

Apr 4, 2005

- Space and time are not distinct
- They are bound together in 4-dimensional spacetime
- Matter tells spacetime how to curve
- Curved spacetime tells matter how to move

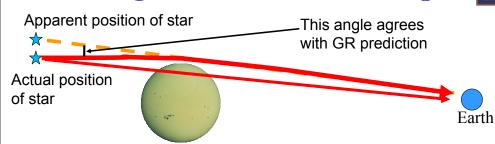
Astronomy 122 Spring 2006 Apr 4, 2005 Astronomy 122 Spring 2006

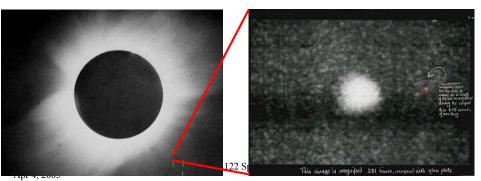

Curved Space

Curved Spacetime

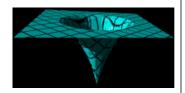

- No matter = Flat Spacetime
- Massive object = Dent in Spacetime
 - Everything follows curvature of spacetime including light (photons)

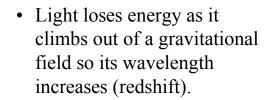
Apr 4, 2005


Astronomy 122 Spring 2006


- Curved Spacetime
- No matter = Flat Spacetime
- Massive object = Dent in Spacetime
 - Everything follows curvature of spacetime including light (photons)

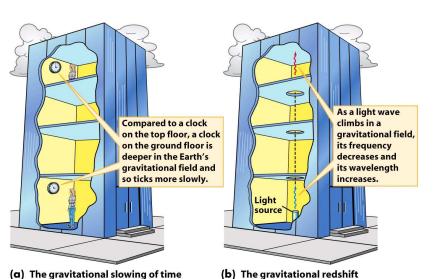
Astronomy 122 Spring 2006


Eddington and the 1919 Eclipse


General relativity

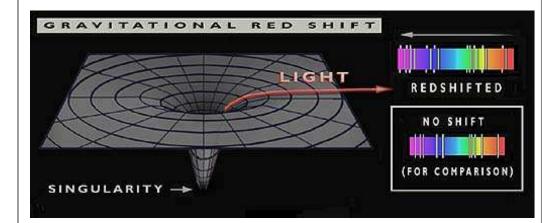
- Gravitational fields can also change space and time
 - A clock runs more slowly on Earth than it does in outer space away from any mass, e.g. planets.
- Einstein revealed that gravity is really 'warped' space-time.
- A black hole is an extreme example.

Gravity Also Redshifts Light

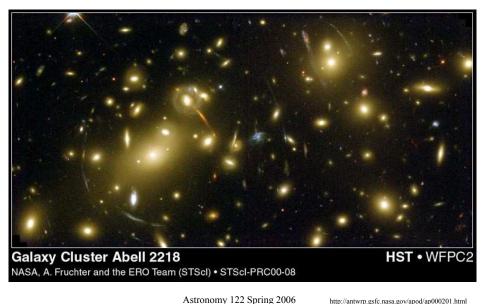


• As with light bending, the effect is small but measurable.

Apr 4, 2005


Gravity Redshifts Light

Gravity Redshifts Light



Astronomy 122 Spring 2006

Einstein Lens

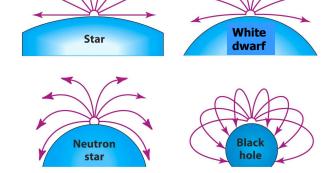
To each ones own

- From each other's view, things would appear normal, time and colors.
- That's the theme of relativity: if I only measure things nearby, I see normal things. Weirdness only happens at distance from observer or moving at great speeds relative to observer.

Apr 4, 2005

Astronomy 122 Spring 2006

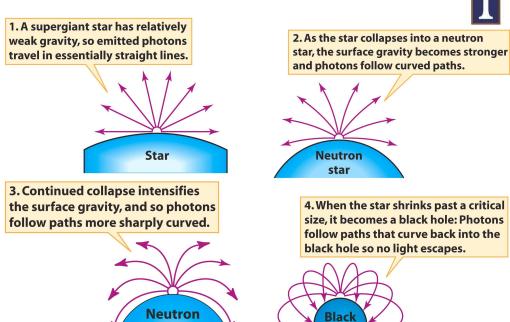
Back to Black Holes



http://antwrp.gsfc.nasa.gov/apod/ap000201.html

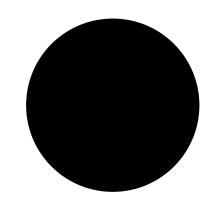
 When matter gets sufficiently dense, it causes spacetime to curve so much. it closes in on itself

Apr 4, 2005


 Photons flying outward from such a massive object arc back inward!

• Neither light or matter can escape its gravity, it is a **black** hole!

Black Holes

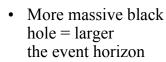

/ 122 Sr

star

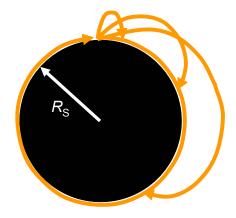
Black Holes Are Very Simple

They can have only

- Mass
- Electric charge
- Rotation (spin)


Apr 4, 2005 Astronomy 122 Spring 2006

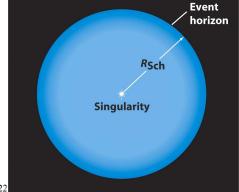
Black Hole


• The Schwarzschild radius

- $-R_{Sch} = 3 (M/M_{\odot}) \text{ km}$
- If object's mass in radius < R_{Sch} then it's a BH
- For Earth $R_{Sch} = 1 cm$
- The radius of no return
- Cosmic roach hotel

Apr 4, 2005

Astronomy 122 Spring 2006



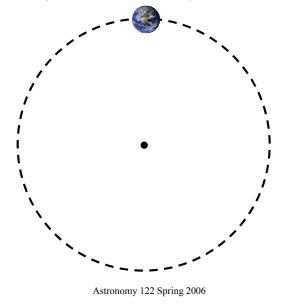
 $R_{Sch} = \frac{2GM}{c^2}$

Black Hole

- The matter in a black hole collapses to a point called a singularity
- A black hole is separated from the rest of the Universe by a boundary, the **event horizon**
- Nothing can escape from within its radius
- This radius is called the Schwarzschild radius

Astronomy 122

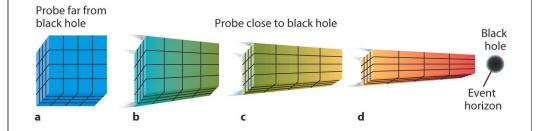
Thought Question



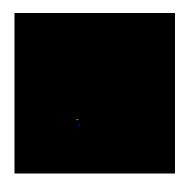
What do you think would happen to the Earth if the Sun collapsed into a black hole?

- 1. Fall in directly
- 2. Slowly spiral in
- 3. Stay in its orbit
- 4. Slowly spiral away
- 5. Fly away in a straight line

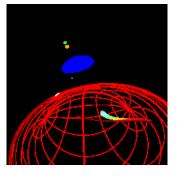
Well outside of a black hole -It looks just like any other mass



Probing a Black Hole


- We send a glowing blue cube into a black hole... What happens?
 - As the probe approaches the black hole, it gets stretched by the gravity of the black hole
 - The light it emits redshifts more and more as it gets closer to the black hole
 - Eventually, tidal forces rip it apart

Example: Approaching a Black Hole

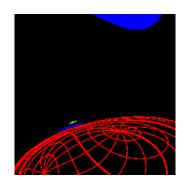

- A quad system with a black hole (30 M_{\odot}) , a blue star (60 M_{\odot}) , a yellow star, and a green star.
- Schwarzschild radius is marked in red.
- Up to last stable orbit $3R_{Sch}$

Orbiting the Black Hole: Our POV

- Orbiting (unstable) at $2 R_{Sch}$, we fire a white probe.
- The probe appears to freeze at the horizon of the black hole, joining the frozen images of probes fired on previous orbits. If we could see a probe clock, it would appear to halt.
- The changing colors of the probe show how it becomes more and more redshifted, from our point of view.
- From the probe point of view, it neither freezes nor redshifts, but careers on through the horizon toward the singularity of the black hole.

Astronomy 122 Spring 2006

http://casa.colorado.edu/~ajsh/schw.shtml


Astronomy 122 Spring 2006

http://casa.colorado.edu/~ajsh/schw.shtm

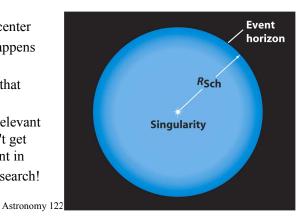
Apr 4, 2005

Going In

- Start out at 1.5 R_{Sch}, the last orbital position, requiring light speed.
- Inside of that, orbits go inside R_{Sch}
- Tidal forces at R_{Sch} for this object is about 1 million g's along a human.
- As we fall in, we free-fall quickly to the singularity
- The blue-shifted Universe is mostly x and γ -rays.
- The tidal force has become so strong that all images are concentrated into a thin line about (what is left of) our waist.

Astronomy 122 Spring 2006

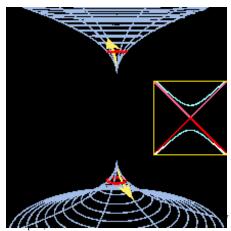
Rotating Black Holes


Spin axis

Apr 4, 2005

Life inside a Black Hole?

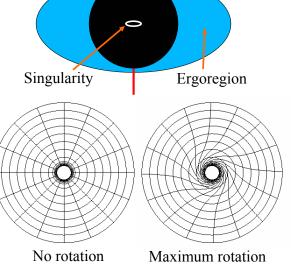
- Once inside R_{Sch}, no getting out
- All matter \Rightarrow center \Rightarrow point (?) "singularity"
- Known laws of physics break down
- A few points to make:
 - We know that all observers travel to center
 - Don't know what happens there
 - Regardless, certain that you die if you go in
 - In a way, it's not a relevant question, since can't get info out even if went in
 - Active subject of research!



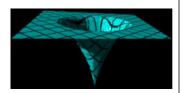
Apr 4, 2005

Wormholes

• Tunnel to another universe, or another part of our own?


- No:
 - Wormhole throat is unstable, and pinches off
 - Once you fall through one horizon, you can't come out through another
- Also: Stellar collapse to a black hole does not produce a wormhole
- So: mathematically allowed, but unphysical in general relativity

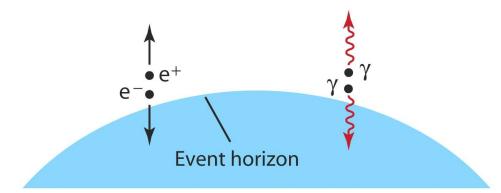
Sorry... not any time soon


- Event horizon
- First studied by Roy Kerr in the early 1960s
- Region just outside horizon where you are dragged along by spacetime
- Can't stand still in ergoregion without falling in
- Singularity is a torus

General relativity

Ì

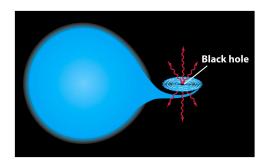
- Rotating black holes may form wormholes to "elsewhen" but they are thought to be short-lived.
- Researchers are considering stabilizing them with exotic matter.
- What if it were possible to create a localized region in which space-time was severely warped?
 - A car has a speed limit on a road, but what if you compress the road itself?



Hawking Radiation

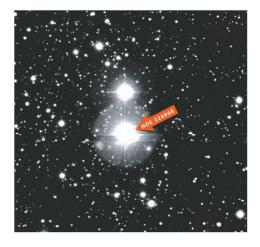
- Black holes are not truly black!
- Quantum mechanical effects near event horizon cause them to produce blackbody-like radiation
- Temperature increases as mass decreases
- Too dim/cool to see for stellar-mass black holes

How To See A Black Hole


- Light cannot escape a black hole, how do we see it?
- We look for interactions between the black hole and a companion
 - Black hole pulls mass from the companion which forms a disk
 - The gas in the disk is compressed and heated so that it gives off X-rays

How To See A Black Hole

- If a black hole emits no light, how do we see it?
- We look for interactions between the black hole and a companion
 - Black hole pulls mass from the companion which forms a disk
 - The gas in the disk is compressed and heated so that it gives off X-rays

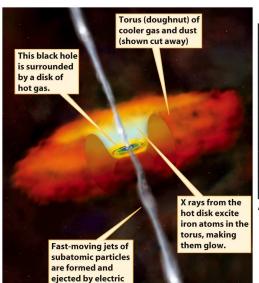


Astronomy 122 Spring 2006

Cygnus X-1

Ì

- Binary system with unseen 7 solar mass companion
- Spectrum of X-ray emission consistent with that expected for a black hole
- Rapid fluctuations consistent with object a few km in diameter


Apr 4, 2005

Astronomy 122 Spring 2006

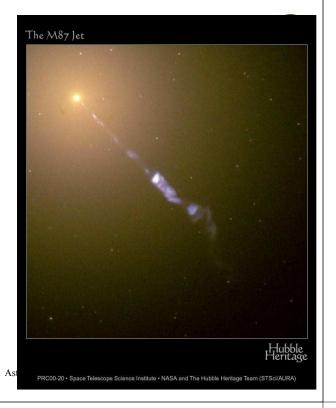
1.2 billion solar masses within region the size of the Solar System ~ 800 ly Core of Galaxy NGC4261 PRC95-47 · ST Scl OPO · December 4, 1995 H. Ford and L. Ferrarese (JHU), NASA

Black Holes

and magnetic fields

Apr 4, 2005

An artist's impression of Cygnus X-1


2 Spring 2006

Orbits indicate a supermassive black hole several million solar masses in size!

The Jet of M87

- Huge jet from the center of this galaxy (50 Mlyrs away).
- 5000 light years in length!
- The jet is probably created by energetic gas swirling around a massive black hole at the galaxy's center

Apr 4, 2005

Grav Waves

- Ripples in spacetime!
- Similar to EM radiation
- Recall rubber sheet analogy: if disturb, launch waves
- Larger disturbance ⇒ bigger waves
- Emitted in dynamic, strong gravity systems: neutron stars in pairs (binaries)
 - Orbit \Rightarrow emit gravity waves \Rightarrow lose energy \Rightarrow fall in \Rightarrow decrease period P

http://www.ligo.caltech.edu/LIGO_web/PR/scripts/facts.htm

Astronomy 122 Sping 2000

Apr 4, 2005

22 July 2004

LIGO-G040300-00-Z

Four interferometers contribute data to LSC analyses:

- •4 km and 2 km interferometers at LIGO Hanford Observatory
- •4 km interferometer at LIGO Livingston Observatory
- •GEO600

N.B.: No GEO data available for S2. but back on air for S3.

