Astronomy 122

This Class (Lecture 18):

Stellar Evolution:
Post-Main Sequence

<u> Make-up Nightlabs!</u>

Nightlabs due in discussion class on April 5th.

Next Class:

Neutron Stars

Music: Supernova – Liz Phair

Astronomy 122 Spring 2006

Mar 28, 2005

Outline

Astronomy 122 Spring 2006

Icko Lecture: Extra Credit

• "The Mars Exploration Rover Mission" by Dr. Steven Squyres, Goldwin Smith Professor of Astronomy at Cornell University

 Tuesday, March 28th at 7PM in Foellinger Auditorium

• Go to lecture and write a typed ~1 page analysis on the talk, make sure to discuss (1) what surprising thing you learned and (2) the most interesting aspect of the talk.

- Extra credit worth an extra 1% to your final grade.
- But, do not walk out of the talk until the questions have finished

Mar 28, 2005

Astronomy 122 Spring 2006

Evolutionary Path of a High-Mass Star

Spectral Class

Mor 29 2001

Mar 28, 2005

High Mass Stars (> 8 M_{sun})

Astronomy 122 Spring 2006

High Mass Stars (> 8 M_{sun}): When the Hydrogen Runs out?

- Similar to intermediate-mass stars in the first few stages
- When the hydrogen supply runs out the core starts to contract
- Hydrogen shell burning (around the helium core) starts
- The outer envelope expands quickly becoming a red supergiant

Mar 28, 2005

Astronomy 122 Spring 2006

The Supergiant Phase

- Outer envelope of the star grows larger and cooler
 - Up to 5 AU in size!
 - Unlike a low mass star, brightness does not increase dramatically
- Eventually, core is hot enough that it can fuse helium atoms together (no flash)
 - Star contracts and heats up
 - Now a blue supergiant

Massive Stars: Cycles of Fusion

- Helium fusion is not the end for massive stars
- Cycles of core contraction, heating, ignition
- Ash of one cycle becomes fuel for the next
 - carbon ⇒ oxygen, neon, sodium, & magnesium
 - neon ⇒ oxygen & magnesium
 - oxygen ⇒ silicon & sulfur
 - silicon ⇒ iron
- Onion-skin like structure develops in the core

Mar 28, 2005

Astronomy 122 Spring 2006

Mar 28, 2005

Iron – The End of the Road

- Supergiants "burn" heavier and heavier atoms in the fusion process
- Each stage faster than the last
- After iron no fuel left!
 - It requires energy to produce heavier atoms

Stage	Temperature	Duration
H fusion	40 million K	7 million yr
He fusion	200 million K	500,000 yr
C fusion	600 million K	600 yr
Ne fusion	1.2 billion K	1 yr
O fusion	1.5 billion K	6 mo
Si fusion	2.7 billion K	1 day

Values for a 25M_{Sun} star

Mar 28, 2005

Astronomy 122 Spring 2006

Core Collapse

- Completely out of gas!
- Hydrostatic equilibrium is gone.
- The iron core of the star is supported by electron degeneracy pressure
 - Same pressure that supports a white dwarf
- Eventually, gravity wins...
 - This happens when the core > 1.4 solar masses
 - Remember the Chandrasekhar limit
 - The core has nuclear density!
 - It Earth had same density, it would be 1000 feet in diameter.

Evolutionary Path of a High-Mass Star

Core Collapse

- When core is greater than $1.4 M_{sun}$ core collapse!
 - From 1,000 km across to 50 km in 1/10th of a second
 - Nearly 10% speed of light!
- The core is transformed into a sea of neutrons
 - Electrons are squeezed into protons, neutrinos released

When Electron Degeneracy Just A Isn't Enough

Mar 28, 2005

Neutron-degenerate matter 100 million tons per cubic cm

Electron-degenerate matter 1 ton per cubic cm

Neutrinos produced as electrons are forced into nuclei

Astronomy 122 Spring 2006

Supernova!

- Core basically becomes a large atomic nucleus-ultra-high density!
- During collapse, envelope "bounces" off stiff core and produces a shock wave
 - Material is so dense, that it is opaque to the neutrinos produced
 - Neutrinos give the shock a "kick"
 - Rips the outer layers of the star apart
- Star explodes in a supernova
- Releases a tremendous amount of energy
 - 99% of the energy in the form of neutrinos
- >90% of the mass of star is ejected into space!
 - Fast, hot,

10 milliseconds

20 milliseconds

Mar 28, 2005

Astronomy 122 Spring 2006

Game Over!

AstroBlaster!

Fascinations[®]

www.fascinations.com

Mar 28, 2005

Astronomy

Supernova!

(

Mar 28, 2005

Astronomy 122 Spring 2006

Bright as a Galaxy

- Supernovae are **bright**
 - A star's brightness increases 10,000 times!
 - Rivals an entire galaxy!

Light from a single supernova

Mar 28, 2005

Astronomy 122 Spring 2006

Making Heavy Elements

- During the explosion, energy-consuming fusion reactions are possible
- Heavy elements up to plutonium (& beyond?) are produced
- Dominant product: iron

Making Heavy Elements

- These by-products are *blasted* into space (>90% of star)
- Ejection is fast, hot, and enriched.
- Supernovae provide much of the building blocks for planets... and us!
- We are recycled supernova debris!
- Star stuff.

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

Delenn, B5

Stellar Evolution Re-Cycle

Mar 28, 2005

Astronomy 122 Spring 2006

Stellar Evolution Cycle

- Stars form out of the interstellar medium
- They manufacture helium, carbon, nitrogen and more in their interiors by nuclear fusion
- Heavier elements (iron, lead, uranium, etc..) are made by supernovae
- Stars give these processed materials back to the interstellar medium when they die
- The processed materials are included in the gas and dust out of which the next generation of stars and planets will form

Mar 28, 2005

Astronomy 122 Spring 2006

Supernova Explosions in Recorded History

- 1054 AD
- Europe: no record
- China: "guest star"
 - So bright, could see it during the day for most of July.
- Anasazi people
 - Chaco Canyon, NM
 - Rock Paintings
- Modern view of this region of the sky:
 - Crab Nebula a supernova remnant
 - Massive star supernova

Supernova Explosions in Recorded History

- November 11, 1572
- Recorded by Tycho Brahe
 - Called it a "nova stella" (new star)
- For about two weeks the supernova could be seen in the daytime!
- Modern view (X-rays):
 - Tycho's Supernova Remnant
- Probably a white dwarf supernova (Ia)

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

Supernova 1987A

Supernova 1987A

- Only about ~3/century in a galaxy.
- Last was 400 yrs ago (Tycho)
- 1987A happened in the satellite galaxy LMC (150,000 lyrs away)
- Star was about 20 M_•

Mar 28, 2005

 Detected neutrinos from the core (most of explosion energy) for 13 secs about 20 detected.

IMB Kamiokande

time in seconds

Original star was a B3 blue supergiant

Mar 28, 2005

Astronomy 122 Spring 2006

Before

Supernova 1987A - Today

SN1987A HST September 24, 1994 Feb. '94 Sept '94 Mar. '95 Feb '96

Supernova 1987A Explosion Debris
Hubble Space Telescope • WFPC2
Astronomy 122 Spring 2006

Feb. 23, 1987

Death throes

- What triggers a supernova?
 - Hydrostatic equilibrium is lost, gravity wins
 - Iron core with $M > M_{Chandra}$
- What happens?
 - Quick core collapse overcoming electron degeneracy pressure.
 - Rebound off the core, explosion of envelope
- What are end products?
 - Enriched ejecta and compact neutron star (if core mass < 3 solar masses)

Supernova Leftovers

Relative Sizes of Stellar Corpses

- What's left of the star's core after a massive star supernova?
- A neutron star
 - About 1.4 2 solar masses
 - Very small diameter around 20 km!
 - Composed of a sea of neutrons
 - Supported by neutron degeneracy pressure!
 - Teaspoon of neutron star material on Earth would weigh almost 1 billion tons!!!!
 - Surface gravity 200 billion times that on Earth
 - Escape velocity half the speed of light

Astronomy 122 Spring 2006

Neutron star

Mar 28, 2005

Astronomy 122 Spring 2006

- In the late 1960s, Jocelyn Bell discovered radio pulses from the constellation Vulpecula that repeated regularly
 - Every 1.337... seconds
- What could it be?
- Perfect timing, but no real encoding of signal.
- Jokingly called LGMs, then Pulsars.

Jocelyn Bell Burnell

Anthony Hewish

Pulsars

- What could it be?
 - Pulses were too fast to be a variable star
- A rotating star?

Pulsars

- Very precise, better than atomic clocks
- Periods from 8.51s to 1.56 ms!
- Could they be something spinning?
 - Would have to be small to be spinning that fast
- They must be spinning neutron stars!

Mar 28, 2005

Astronomy 122 Spring 2006

What are Pulsars?

- Intense beams of radiation emanate from regions near the north and south magnetic poles of a neutron star
- These beams are produced by streams of charged particles moving in the star's intense magnetic field
- As the Pulsar gives energy to its surroundings, it slows down.
- The periods increase (few billionths of a second each day)

What are Pulsars?

- When the core collapses, its spin and magnetic field strength increases
- Typically
 - Surface field strength over 1 trillion times that of the Earth
 - Rotation rate up to 1000 times per second
- Magnetic field beams radiation into space
- If the Earth is in the beam's path, we see the pulsar

Astronomy 122 Spring 2006

Crab Nebula – Remnant of the Supernova of 1054

Optical - ESO

Mar 28, 2005

X-ray - Chandra

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

Crab Nebula – Remnant of the Supernova of 1054

Mar 28, 2005

Astronomy 122 Spring 2006

The Crab

Astronomy 122 Spring 2006

Escaping Pulsars

- Some Pulsars are ejected during the supernovae.
- Can outrun the explosion.
- This one is 600 km/s

Astronomy 122 Spring 2006

When Neutron Degeneracy Isn't Enough

- Maximum neutron star mass
 - About $3.0 \,\mathrm{M}_{\odot}$

Mar 28, 2005

- Original star around $30M_{\odot}$
- Beyond this mass, neutron degeneracy cannot stop gravity
- Nothing left to stop, so total collapse– gravity rules!
- A black hole
 - $-\mathbf{v}_{\rm esc} > \mathbf{c}$

Astronomy 122 Spring 2006

Stellar Evolution Recap

