Astronomy 122

This Class (Lecture 16):

Stellar Evolution: Post-Main Sequence

Next Class:

Stellar Evolution: Post-Main Sequence

Music: We Are All Made of Stars – Moby

Mar 16, 2005

Astronomy 122 Spring 2006

Outline

White dwarfs – what holds them up?
High mass stars → supernova/neutron star or black hole

<u>Make-up Nightlabs!</u>

Nightlabs due in discussion class on March 29th.

Icko Lecture: Extra Credit

- "The Mars Exploration Rover Mission" by Dr. Steven Squyres, Goldwin Smith Professor of Astronomy at Cornell University
- Tuesday, March 28th at 7PM in Foellinger Auditorium
- Go to lecture and write a typed ~1 page analysis on the talk, make sure to discuss (1) what surprising thing you learned and (2) the most interesting aspect of the talk.

- Extra credit worth an extra 1% to your final grade.
- But, **do not walk out** of the talk until the questions have finished.

Mar 16, 2005

Astronomy 122 Spring 2006

Low-Mass Star End Game

- "Superwind"
- Outer layers of the red giant star are cast off

 Up to 40% of original mass
- The core remains, made of carbon/oxygen "ash" from helium fusion
 - The core is very hot, above 200,000 K
- Ultraviolet radiation from the core ionizes the cast off outer layers
 - Becomes a planetary nebula

- Unfortunate name, but some of the most beautiful objects in the sky.

What About the Core?

- Nuclear fusion has stopped, and gravity begins to win the battle
- Core contracts to the size of the Earth
 - But its about 60% the Sun's mass!
 - Material in the core is compressed to a density of 1,000 kg/cm³!
 - Very hot, surface temperature >100,000 K
- Final fate White dwarf
 - Slowly cools off over billions of years

Mar 16, 2005

Astronomy 122 Spring 2006

Sirius B

Electron Degeneracy

- The electrons get so squashed together that they get pushed into degenerate states
 - This creates **pressure** to counteract gravity (Pauli exclusion)
 - Stops contraction

Electron-degenerate

matter 1 ton per cubic cm

Matter in the core of a normal star

Mar 16, 2005

Astronomy 122 Spring 2006

Chandrasekhar limit

- Maximum mass of a white dwarf (M \cong 1.4 solar masses).
- No white dwarf observed is over this.
- If mass is higher, the white dwarf can not support itself with electron degeneracy, and it collapses more! Gravity is a harsh mistress!

Ground HST · WFPC2

Astronomy 122 Spring 2006

White Dwarf Stars in M4 PRC95-32 · ST Scl OPO · August 28, 1995 · H. Bond (ST Scl), NASA

White Dwarfs are Weird

The more massive, the smaller!

Their radius decreases with mass!

Mar 16, 2005

Astronomy 122 Spring 2006

Stellar Diamonds!?!

- The interior of the white dwarf crystallizes due to the extreme pressures
- Made mostly of carbon (some oxygen)
- Crystallized carbon = a diamond
 - With a blue-green tint from the oxygen
 - 10 billion trillion trillion carats!

The Life and Times **Evolutionary Path of a Solar-Mass Star** Schematic Hertzsprung-Russell Diagram of a Low-Mass Star 3000 ^(K) 40,000 20,000 10,000 7500 5500 4500 106 -10 Absolute Magnitude Planetary nebula -5 104 Asymptotic giant brancl lelium للمركبين التركبيني للتلية Luminosity (L_{sun}) flash 102 Π Horizontal bra 5 Main sequence 104 10^{9} 10^{-2} 10 Temperature (K) 10 15 F ο G κ в А м Spectral Class Astronomy 122 Spring 2006 http://rainman.astro.uiuc.edu/ddr/stellar/beginner.html Mar 16, 2005 Mar 16, 2005 **Binary Systems? Binary Systems?** • In a close binary pair of stars with slightly Companion star Jet different masses. the higher mass star evolves into a white White dwarf X-ray heating Accretion disc dwarf first Hot spot Later, the other star Accretion disk evolves into a red giant White dwarf then • steals mass from its giant companion! Accretion Creates a dense layer of hydrogen gas on the white dwarf's • Companion

surface

Mar 16, 2005

Disc wind

Astronomy 122 Spring 2006

stream

star

R. Hynes

Novae

- If enough material piles up onto the surface of a white dwarf, can undergo explosive nuclear fusion
- White dwarf blows off this envelope and brightens by 100 -1000 times
- Fades over a period of months
- This is called a **nova** (from Latin for "new")
- Common, about 20 per year in our galaxy

Nova Cygni 1992

Evolution of an Intermediate-Mass (4 M_{Sun}) Star

Astronomy 122 Spring 2006

Mar 16, 2005

High Mass Stars (> 8 M_{sun})

Mar 16, 2005

Mar 16, 2005

Astronomy 122 Spring 2006

The Supergiant Phase

- Outer envelope of the star grows larger and cooler
 - Up to 5 AU in size!
 - Unlike a low mass star, brightness does not increase dramatically
- Eventually, core is hot enough that it can fuse helium atoms together (non-degen gas, so no flash)
 - Star contracts and heats up
 - Now a blue supergiant

High Mass Stars (> 8 M_{sun}): when the Hydrogen Runs out?

- Similar to intermediate-mass stars in the first few stages
- When the hydrogen supply runs out the core starts to contract
- Hydrogen shell burning (around the helium core) starts
- The outer envelope expands quickly becoming a red supergiant

Mar 16, 2005

Astronomy 122 Spring 2006

Massive Stars: Cycles of Fusion

- Helium fusion is not the end for massive stars
- Cycles of core contraction, heating, ignition
- Ash of one cycle becomes fuel for the next
 - carbon ⇒ oxygen, neon, sodium, & magnesium
 - neon ⇒ oxygen & magnesium
 - oxygen ⇔ silicon ¿
 - silicon \Rightarrow iron
- Onion-skin like structure develops in the core

Astronomy 122 Spring 2006

Iron – The End of the Road

- Supergiants "burn" heavier and heavier atoms in the fusion process
- Each stage faster than the last
- After iron no fuel left!
 - It requires energy to produce heavier atoms

Stage	Temperature	Duration
H fusion	40 million K	7 million yr
He fusion	200 million K	500,000 yr
C fusion	600 million K	600 yr
Ne fusion	1.2 billion K	1 yr
O fusion	1.5 billion K	6 mo
Si fusion	2.7 billion K	1 day

Mar 16, 2005

Values for a 25M_{SuA} staromy 122 Spring 2006

Core Collapse

- Completely out of gas!
- Hydrostatic equilibrium is gone.
- The iron core of the star is supported by electron degeneracy pressure
 - Same pressure that supports a white dwarf
- Eventually, gravity wins...
 - This happens when the core reaches 1.4 solar masses
 - Remember the Chandrasekhar limit
 - The core has nuclear density!
 - It Earth has same density, it would be 1000 feet in diameter.

Evolutionary Path of a High-Mass Star

Core Collapse

Ì

- When core is greater than 1.4 M_{sun} core collapse!
 - From 1,000 km across to 50 km in 1/10th of a second
 - Nearly 10% speed of light!
- The core is transformed into a sea of neutrons
 - Electrons are squeezed into protons, neutrinos released

Matter in the core of a normal star

Neutron-degenerate matter 100 million tons per cubic cm

Neutrinos produced as electrons are forced into nuclei

Supernova!

- Core basically becomes a large atomic • nucleus- ultra-high density!
- During collapse, envelope "bounces" of stiff core and produces a shock wave
 - Material is so dense, that it is opaque to the neutrinos produced
 - Neutrinos give the shock a "kick"
 - Rips the outer layers of the star apart
- Star explodes in a supernova ٠
- Releases a tremendous amount of energy ٠
 - 99% of the energy in the form of neutrinos
- >90% of the mass of star is ejected into space!
 - Fast, hot,

20 milliseconds

Mar 16, 2005

Mar 16, 2005

Astronomy 122 Spring 2006

Astronomy

AstroBlaster!

- We are recycled supernova debris!
- Star stuff.

0)

Astronomy 122 Spring 2006

Stellar Evolution Cycle

- Stars form out of the interstellar medium
- They manufacture helium, carbon, nitrogen and more in their interiors by nuclear fusion
- Heavier elements (iron, lead, uranium, etc..) are made by supernovae
- Stars give these processed materials back to the interstellar medium when they die
- The processed materials are included in the gas and dust out of which the next generation of stars and planets will form

Supernova Explosions in Recorded History

• 1054 AD

Mar 16, 2005

- Europe: no record
- China: "guest star"
- Anasazi people
 - Chaco Canyon, NM
 - Rock Paintings
- Modern view of this region of the sky:
 - Crab Nebula a
 - supernova remnant
- Massive star supernova

Mar 16, 2005

Astronomy 122 Spring 2006

Supernova Explosions in Recorded History

Astronomy 122 Spring 2006

- November 11, 1572
- Recorded by Tycho Brahe
 - Called it a "nova stella" (new star)
- For about two weeks the supernova could be seen in the daytime!
- Modern view (X-rays):
 Tycho's Supernova Remnant
- Probably a white dwarf supernova (Ia)

Supernova 1987A

Astronomy 122 Spring 2006

Before

Astronomy 122 Spring 2006

Mar 16, 2005

Ì

Supernova 1987A

IMB

- Supernova are rare
- Only about ~3/century in a galaxy.
- Last was 400 yrs ago (Tycho)
- 1987A happened in the satellite galaxy LMC (150,000 lyrs away)
- Star was about 20 M_{\odot}
- Detected neutrinos from the core (most of explosion energy) for 13 secs about 20 detected.

Mar 16, 2005

Supernova 1987A - Today

