Astronomy 122

This Class (Lecture 16):

Stellar Evolution: Post-Main Sequence

Next Class:

Stellar Evolution: Post-Main Sequence

Music: Supernova - Liz Phair

Mar 14, 2005

Astronomy 122 Spring 2006

• The death of stars.... It starts now..

Low-mass stars \rightarrow planetary nebula/white dwarf

Outline

• High mass stars → supernova/neutron star or black hole

Mar 14, 2005

Astronomy 122 Spring 2006

Stellar Lifestyles

Astronomy 122 Spring 2006

Low-mass stars

Make-up Nightlabs!

class on March 29th.

Nightlabs due in discussion

Massive stars

Mar 14, 2005

Astronomy 122 Spring 2006

Mar 14, 2005

Main Sequence Lifetimes

Mar 14, 2005

Astronomy 122 Spring 2006

Guess The Cluster's Age!

- We can estimate the age of a cluster from its main sequence stars
 - Massive stars age faster than low mass stars
 - The cluster can't be any older than its most massive stars' main sequence lifetimes
 - We call the point where a cluster's main sequence ends the main sequence turnoff

Mar 14, 2005

Astronomy 122 Spring 2006

The Evolution of Stars

- A star's evolution depends on its mass
- We will look at the evolution of three general types of stars
 - Red dwarf stars (less than 0.4 M_{Sun})
 - Low mass stars (0.4-8 M_{Sun})
 - High mass stars (more than 8 M_{Sun})
- We can track the evolution of a star on the H-R diagram
 - From main sequence to giant/supergiant and to its final demise

Red Dwarf Stars

- $0.08 M_{Sun} < Mass < 0.4 M_{sun}$
- Fully convective interior
- The star turns all of its hydrogen to helium, then all fusion will stop
- Live hundreds of billions to trillions of years
- The Universe is only about 14 billion years old, so none of these stars have yet made it to the end of their life

Mar 14, 2005

Life of a Low Mass (Sun-like) Star

- Most of its life is spent in the happy pursuit of burning $H \Rightarrow He$
- With time, luminosity and temperature evolve gradually in response
- The Sun is now 40% brighter and 6% bigger than zero age MS.

Low-Mass Stars (Sun-like)

- On the main sequence for ~ 10 billion years.
- The core is where fusion occurs- $H \Rightarrow He$
- Eventually, runs out of hydrogen.

Life of Our Sun

(b) Helium in the Sun's interior

- At 10 Byr old will be 2x as bright as now
- This alone will cause a Greenhouse effect on earth!
- But in fact, oceans boil \Rightarrow runaway ٠ greenhouse when $L = 1.1L_{\odot}$, which happens in about 1 Byr. So this is when things may hit the fan, not in 5 Byr.
- Model dependent, but still....

In 5-7 Billion years

The Sun today and as a red giant

The Red Giant Phase

- When the hydrogen is gone in the core, fusion stops
- Core starts to contract under its own gravity
- This contracting heats the core, and hydrogen fusion starts in the shell around the core
- Energy is released, expands envelope ⇒ Lum increases!
- As the envelope expands, it cools so it becomes a red giant

H Burning Shell

Cool, Extended

Envelope

Astronomy 122 Spring 2006

Cepheid Variables

- Giants with more than
 5 M_{Sun} enter periods of variability as they evolve
 - Become unstable
 - Start to pulsate at a regular pace
 - Pulsation makes them vary in brightness
- The period of pulsation is related to the star's absolute magnitude
 - Excellent way to measure distance!

When Helium Runs Out...

- Fusion in the core stops the helium has been converted to carbon and oxygen
- Stellar core collapses under its own gravity
- Shell starts fusing helium
- Star starts to grow and cool again
- Called the *asymptotic giant branch*

H Burning Shell He Burning Shell Cool, Extended Envelope

Mar 14, 2005

Astronomy 122 Spring 2006

Think-Pair-Share

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

As a one solar mass star evolves into a red giant, its position on the H-R diagram will move...

- 1. Up and to the left
- 2. Down and to the right
- 3. Down and to the left
- 4. Up and to the right

Evolutionary Path of a Solar-Mass Star

Mar 14, 2005

- Ultraviolet radiation from the core ionizes the cast off outer layers
 - Becomes a planetary nebula
 - Unfortunate name, but some of the most beautiful objects in the sky.

NGC 2440

Planetary Nebulae

- Note the emission lines \Rightarrow vibrant colors (somewhat enhanced)
- Ring: approx true color, He=blue, O=green, N=red ٠
- Cat's eye: H=red, O=blue, N=green ٠
- Also note: rarely spherical: rotation, mag fields, ejected gas, and companion can all make axial

Cat's Eve Nebula

Mar 14, 2005

Ring

Astronomy 122 Spring 2006

What About the Core?

• Nuclear fusion has stopped, and gravity begins to win the battle

Sirius B

Astronomy 122 Spring 2006

- Core contracts to the size of the Earth •
 - But its about 60% the Sun's mass!
 - Material in the core is compressed to a density of 1,000 kg/cm³!
 - Very hot, surface temperature >100,000 K
- Final fate White dwarf
 - Slowly cools off over billions of years

Planetary Nebulae

Mar 14, 2005

Astronomy 122 Spring 2006

Electron Degeneracy

- The electrons get so squashed together that they get pushed into degenerate states
 - This creates pressure to counteract gravity (Pauli exclusion)
 - Stops contraction

Electron-degenerate matter 1 ton per cubic cm

Mar 14, 2005

Matter in the core of

a normal star

Chandrasekhar limit

Ì

- Maximum mass of a white dwarf (M ≅1.4 solar masses).
- No white dwarf observed is over this.
- If mass is higher, the white dwarf can not support itself with electron degeneracy, and it collapses more! Gravity!

Relative Size of White Dwarf

White Dwarfs are Weird

Astronomy 122 Spring 2006

Astronomy 122 Spring 2006

Their radius *decreases* with mass!

Mar 14, 2005

White Dwarf Stars in M4 PRC95-32 · ST Scl OPO · August 28, 1995 · H. Bond (ST Scl), NASA

HSTOWFP

Mar 14, 2005

Astronomy 122 Spring 2006

Stellar Diamonds!?!

- The interior of the white dwarf crystallizes due to the extreme pressures
- Made mostly of carbon (some oxygen)
- Crystallized carbon = a diamond
 - With a blue-green tint from the oxygen
 - 10 billion trillion trillion carats!

The Life and Times of a Low-Mass Star

Astronomy 122 Spring 2006 http://rainman.astro.uiuc.edu/ddr/stellar/beginner.html

Mar 14, 2005

Ì **Evolutionary Path of a Solar-Mass Star** Schematic Hertzsprung-Russell Diagram 10⁶40,000 20,000 10,000 3000 ^(K) 7500 5500 4500 -10 Planetary nebula Absolute Magnitude -5 104 lelium Asymptotic giant brand Luminosity (L_{sun}) 10² 0 Horizontal bran 5 Main sequence 10^{-2} 0 10-4 5 0 в F G κ м Spectral Class

Astronomy 122 Spring 2006

Binary Systems?

- In a close binary pair of stars with slightly different masses, the higher mass star evolves into a white dwarf first
- Later, the other star evolves into a red giant
- White dwarf then steals mass from its giant companion!

• Creates a dense layer of hydrogen gas on the white dwarf's surface

Mar 14, 2005

Novae

- If enough material piles up onto the surface of a white dwarf, can undergo explosive nuclear fusion
- White dwarf blows off this envelope and brightens by 100 – 1000 times
- Fades over a period of months
- This is called a **nova** (from Latin for "new")
- Common, about 20 per year in our galaxy

Mar 14, 2005

Astronomy 122 Spring 2006