

Outline

Ì

- Hubble's Law
- Active Galactic Nuclei– Quasars, BL Lac, Radio Galaxies, and Seyfert Galaxies.
- The monster within: Supermassive blackholes
- The AGN Unified Model

Hubble's

Law

 $H_0 = 72 \text{ km/sec/Mpc}$

• Gamma ray bursts

• Homework due on Friday– 11:50 am

• Honor credit—need to have those papers soon!

• THE FINAL IS DECEMBER 15th: 7-10pm!

Dec 3, 2003

Astronomy 100 Fall 2003

Dec 3, 2003

Astronomy 100 Fall 2003

GALAXIES in

Ursa Major

Corona Borealis

Redshift of Galaxies

- Most Galaxies are moving away from us.
- The farther away, the faster they are moving away.
- Or $V = H_0 \times D$
- So, as the Doppler effect tells us, the emission from the Galaxies are redshifted.

the emission

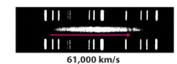
Redshift $z = (\lambda_{obs} - \lambda_{em})/\lambda_{em}$

Distance (Mpc)

At low redshift z = v/c

→ A

39,000 km/s


REDSHIFTS

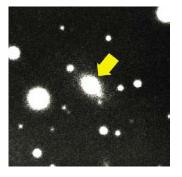
1,200 km/s

111

15,000 km/s

22,000 km/s

Dec 3, 2003

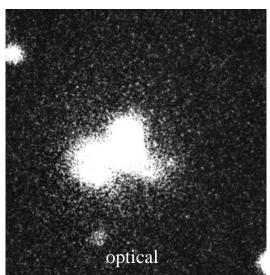

Velocity (km/sec)

Astronomy

Astronomy 100 Fall 2003

Active Galactic Nuclei

- Ì
- Keep in mind that most galaxies are normal.
- But there are some weird galaxies (about 1% of all galaxies) that are unusually bright (about 10-1000 times more than the MW).
- They are also variable.
- Also called
 - Quasars
 - Radio Galaxies
 - Blazars (BL Lac)


BL Lac

Dec 3, 2003

Astronomy 100 Fall 2003

The Cygnus A Galaxy

- Looks like a star
- But bright in the radio
- And it's moving away from us fast!
- Moving away at 14,000 km/s.
- That's about 5% the speed of light!
- 635 million light years away! Or 194 Mpc.

Dec 3, 2003

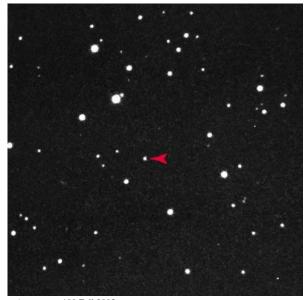
Astronomy 100 Fall 2003

Quasars...But It looks like a Star

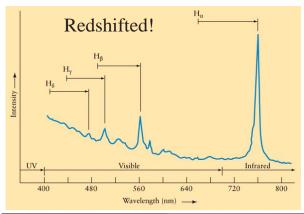
- These objects have a spectrum much like a dim star.
- But highly redshifted.
- Enormous recessional velocity.
- So, Hubble's Law tells us that they are at "astronomical" distances.
- Must be very bright to be visible at such a great distance.
- They are also very variable—emission from small region.

Astronomy 100 Fall 2003

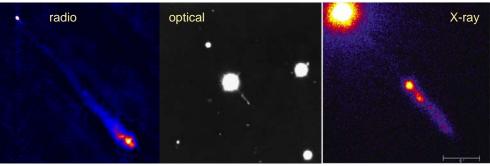
• Called a Quasi-stellar object, QSO, or *Quasar*.


Quasars: 3C273

- Really looks like a star.
- But greatly redshifted—


z = 0.16

• That's 2 billion light years away.


Dec 3, 2003

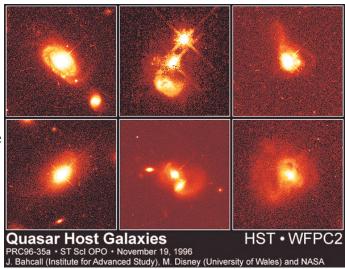
Astronomy 100 Fall 2003

Quasars: 3c273

PKS 2000-330

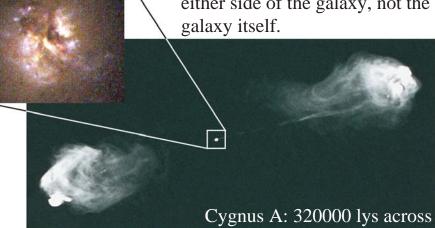
- · Redshifted so much that UV line emission can be seen in the optical.
- This Galaxy is moving away from us at 92% the speed of light.
- Distances for Ouasars can be as much as 10 to 13 billion light years away.

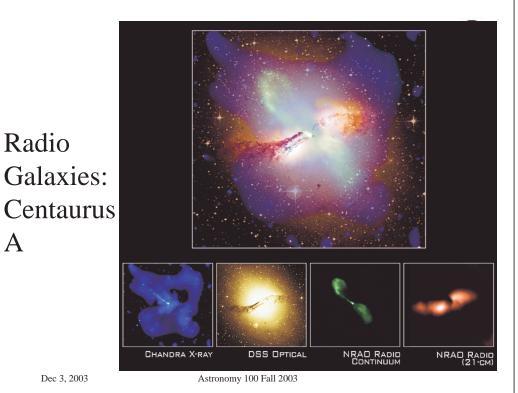
400 500 600 800 Wavelength (nm) →


Dec 3, 2003

Astronomy 100 Fall 2003

Quasar Host Galaxies

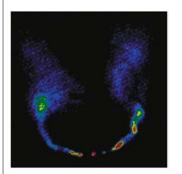

Quasars live in galaxies. They are Galactic Nuclei!


Radio Galaxies

- Galaxies that emit large amounts of radio waves
- Radio emission come from *lobes* on either side of the galaxy, not the galaxy itself.

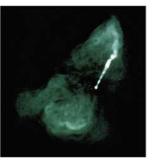
Dec 3, 2003 Astronomy 100 Fall 2003

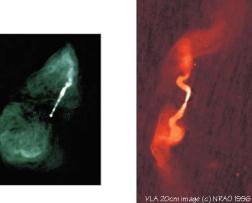
Centaurus A


Dec 3, 2003

Astronomy 100 Fall 2003

Radio Galaxies



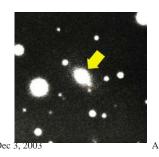

- There are varying types of radio loud galaxies.
- Called radio loud as they can be 10 million times as bright as the MW at radio wavelengths.

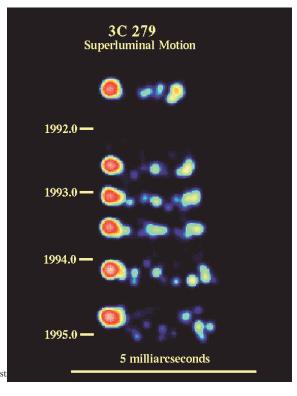
Radio

Dec 3, 2003

Seyfert Galaxies

- Look like normal spiral galaxies, but with radio loud nuclei.
- This galaxy varies tremendously. Over a few weeks it's brightness can change by the ENTIRE brightness of the Milkyway.

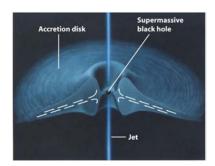

NGC 1566


Dec 3, 2003 Astronomy 100 Fall 2003

Astronomy 100 Fall 2003 Dec 3, 2003

Blazars

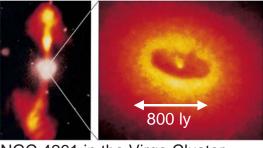
 Bright nuclei with almost completely featureless spectrum.



Driving the Galaxies: The Monster Within

• Probably not a scary blue monster.

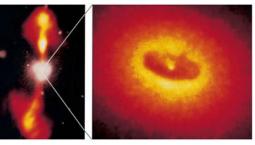
• But probably the energy source is a supermassive blackhole.


Dec 3, 2003

Astronomy 100 Fall 2003

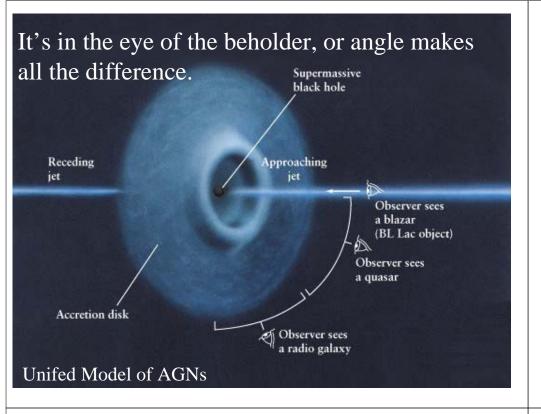
Supermassive Blackholes

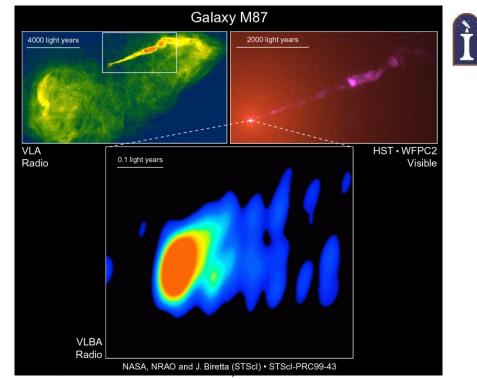
- Energy source for these active galaxies.
- Only thing compact enough and energetic enough.
- Blackholes > 1 billion solar masses
- Compression of material falling into blackhole heats it up and forces some into jet



NGC 4261 in the Virgo Cluster

Supermassive Blackholes

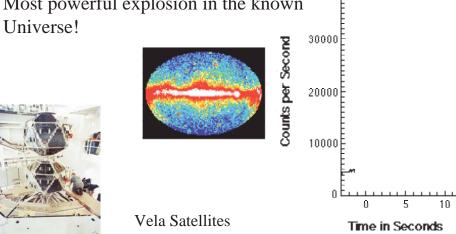

- Supermassive blackholes probably exist in most if not all galaxies cores.
- In the past, active galaxies were more common then now.
- If our galaxy's blackhole were fed, would it turn into an active galaxy?

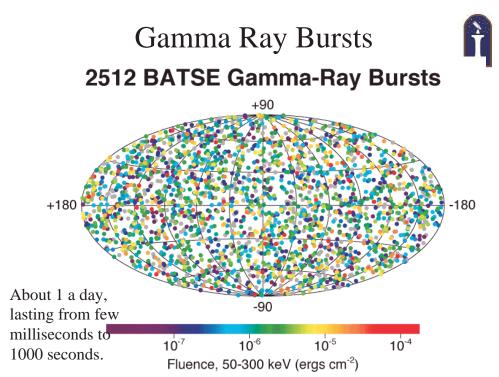


Astronomy 100 Fall 2003

Dec 3, 2003

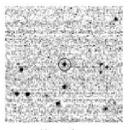
Dec 3, 2003

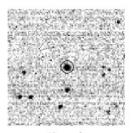


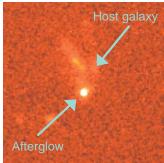

Gamma Ray Bursts

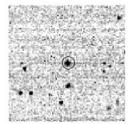
• First detected in 1967 by arm control satellites. First reported in 1973.

• Most powerful explosion in the known




Gamma Ray Bursts


- Recent observations confirm they are very energetic (as much energy in 100 seconds as the Sun over its entire life!) and very distant (z = 4).
- Energized by either the merging of neutron stars or, more likely, hypernovae (> 40 solar mass star)



48 seconds ASHOHOHIY TOO FAIL 2003

73 seconds