

- Homework due on Friday– 11:50 am
- Honor credit– need to have those papers soon!
- THE FINAL IS DECEMBER 15<sup>th</sup>: 7-10pm!

# Outline



- Hubble's Law
- Active Galactic Nuclei– Quasars, BL Lac, Radio Galaxies, and Seyfert Galaxies.
- The monster within: Supermassive blackholes
- The AGN Unified Model
- Gamma ray bursts

# Redshift of Galaxies

- Most Galaxies are moving away from us.
- The farther away, the faster they are moving away.
- Or  $V = H_o \times D$
- So, as the Doppler effect tells us, the emission from the Galaxies are redshifted.







# Hubble's Law





Ursa Major

**GALAXIES** in





15,000 km/s







Redshift  $z = (\lambda_{obs} - \lambda_{em})/\lambda_{em}$ 

At low redshift z = v/c



**Boötes** 



Dec 3, 2003

Astronomy

Hydra

# Active Galactic Nuclei



- Keep in mind that most galaxies are normal.
- But there are some weird galaxies (about 1% of all galaxies) that are unusually bright (about 10-1000 times more than the MW).
- They are also variable.
- Also called
  - Quasars
  - Radio Galaxies
  - Blazars (BL Lac)



BL Lac

# The Cygnus A Galaxy





- Looks like a star
- But bright in the radio
- And it's moving away from us fast!
- Moving away at 14,000 km/s.
- That's about 5% the speed of light!
- 635 million light years away! Or 194 Mpc.

# Quasars...But It looks like a Star



- These objects have a spectrum much like a dim star.
- But highly redshifted.
- Enormous recessional velocity.
- So, Hubble's Law tells us that they are at "astronomical" distances.
- Must be very bright to be visible at such a great distance.
- They are also very variable– emission from small region.
- Called a Quasi-stellar object, QSO, or *Quasar*.

# Quasars: 3C273



- Really looks like a star.
- But greatly redshiftedz = 0.16
- That's 2 billion light years away.



Astronomy 100 Fall 2003





# Quasars: 3c273



# PKS 2000-330

Intensity

- Redshifted so much that UV line emission can be seen in the optical.
- This Galaxy is moving away from us at 92% the speed of light.
- Distances for Quasars can be as much as 10 to 13 billion light years away.





## Quasar Host Galaxies

Quasars live in galaxies. They are Galactic Nuclei!



# Radio Galaxies



- Galaxies that emit large amounts of radio waves
- Radio emission come from *lobes* on either side of the galaxy, not the galaxy itself.



# Radio Galaxies: Centaurus A



Astronomy 100 Fall 2003



### Centaurus A



### Radio Galaxies

- There are varying types of radio loud galaxies.
- Called radio loud as they can be 10 million times as bright as the MW at radio wavelengths.









# Seyfert Galaxies



- Look like normal spiral galaxies, but with radio loud nuclei.
- This galaxy varies tremendously. Over a few weeks it's brightness can change by the ENTIRE brightness of the Milkyway.



NGC 1566

### Blazars

 Bright nuclei with almost completely featureless spectrum.



# Superluminal Motion



5 milliarcseconds

Dec 3, 2003

# Driving the Galaxies: The Monster Within

- Probably not a scary blue monster.
- But probably the energy source is a supermassive blackhole.





Î



# Supermassive Blackholes

- Energy source for these active galaxies.
- Only thing compact enough and energetic enough.
- Blackholes > 1 billion solar masses
- Compression of material falling into blackhole heats it up and forces some into jet





# Supermassive Blackholes

- Supermassive blackholes probably exist in most if not all galaxies cores.
- In the past, active galaxies were more common then now.
- If our galaxy's blackhole were fed, would it turn into an active galaxy?



### It's in the eye of the beholder, or angle makes all the difference. Supermassive black hole Receding Approaching jet jet Observer sees a blazar (BL Lac object) Observer sees a quasar Accretion disk Observer sees a radio galaxy Unifed Model of AGNs





# Gamma Ray Bursts

- First detected in 1967 by arm control satellites. First reported in 1973.
- Most powerful explosion in the known Universe!









# Gamma Ray Bursts

- Recent observations confirm they are very energetic (as much energy in 100 seconds as the Sun over its entire life!) and very distant (z = 4).
- Energized by either the merging of neutron stars or, more likely, hypernovae (> 40 solar mass star)



Host galaxy



73 seconds

22 seconds 3, 2003

48 seconds Astronomy 100 rail 2005